K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

Tính :\(a,\)\(-\sqrt{\left(-6\right)^2}=-|-6|=-6\)

\(b,\)\(-\sqrt{\frac{-25}{-16}}=-\sqrt{\left(\frac{5}{4}\right)^2}=-|\frac{5}{4}|=-\frac{5}{4}\)

\(c,\)\(\sqrt{-\frac{-9}{25}}=\sqrt{\frac{9}{25}}=\sqrt{\left(\frac{3}{5}\right)^2}=|\frac{3}{5}|=\frac{3}{5}\)

\(d,\)\(\left(-\sqrt{7}\right)^2=7\)

\(e,\)\(-\left(\frac{\sqrt{3}}{4}\right)^2=-\frac{\sqrt{3}^2}{4^2}=-\frac{3}{16}\)

\(f,\)\(\sqrt{\left(-2\right)^4}=\sqrt{\left[\left(-2\right)^2\right]^2}=|-2^2|=4\)

So sánh :\(a,\) \(\sqrt{8}-1\)

\(2=3-1=\sqrt{9}-1\)

\(\Rightarrow\sqrt{8}-1< 2\)

\(b,\)\(\sqrt{\frac{16}{2}}=\sqrt{8}>\sqrt{3}\)

\(\Rightarrow\sqrt{\frac{16}{2}}>\sqrt{3}\)

24 tháng 8 2021

a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)

\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)

\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)

b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)

c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)

19 tháng 9 2021

a) \(1=\sqrt{1}< \sqrt{2}\)

b) \(2=\sqrt{4}>\sqrt{3}\)

c) \(6=\sqrt{36}< \sqrt{41}\)

d) \(7=\sqrt{49}>\sqrt{47}\)

e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)

f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)

g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)

h) \(\sqrt{3}>0>-\sqrt{12}\)

i) \(5=\sqrt{25}< \sqrt{29}\)

\(\Rightarrow-5>-\sqrt{29}\)

19 tháng 9 2021

Giỏi quá

a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)

mà 112<117

nên \(4\sqrt{7}< 3\sqrt{13}\)

b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

mà \(\dfrac{21}{4}>\dfrac{36}{7}\)

nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)

d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

24 tháng 8 2020

1.a)

\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)

\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)

Suy ra VT > 7

1.b)

\(\sqrt{16}+\sqrt{25}=4+5=9\)

2.a)

\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)

b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)

Các câu còn lại bạn làm tương tự nhé!

25 tháng 8 2020

c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)

\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)

d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)

a: \(2\sqrt{6}=\sqrt{24}\)

\(3\sqrt{3}=\sqrt{27}\)

mà 24<27

nên \(2\sqrt{6}< 3\sqrt{3}\)

b: \(\dfrac{2}{5}\sqrt{6}=\sqrt{\dfrac{4}{25}\cdot6}=\sqrt{\dfrac{24}{25}}\)

\(\dfrac{7}{4}\sqrt{\dfrac{1}{3}}=\sqrt{\dfrac{49}{16}\cdot\dfrac{1}{3}}=\sqrt{\dfrac{49}{48}}\)

mà 24/25<1<49/48

nên \(\dfrac{2}{5}\sqrt{6}< \dfrac{7}{4}\sqrt{\dfrac{1}{3}}\)

25 tháng 6 2023

a/ x <hoac= -23/4

b/ x=2

a/ có 2xcăn6 > 2x2=4

=> 2 căn 6 > 3+1

<=> 2 căn 6 - 3 >1

b/ có 3 căn 2 > 3 

=> 3 căn 2 - 9 > -6 

=> 6 > 9- 3 căn 2

26 tháng 8 2016

a) \(9=6+3=6+\sqrt{9}\)

\(6+2\sqrt{2}=6+\sqrt{8}\)

\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)

\(3^2=9=5+4=5+\sqrt{16}\)

\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)

c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)

\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)

\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)

\(2^2=14-10=14-\sqrt{100}\)

\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)

\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)