Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`1,`
`3/16 - (x - 5/4) - (3/4 + (-7)/8 - 1) = 2 1/2`
`=> 3/16 - x + 5/4 - (-1/8 - 1) = 2 1/2`
`=> 3/16 - x + 5/4 - (-9/8) = 2 1/2`
`=> 3/16 - x + 19/8 = 2 1/2`
`=> 3/16 - x = 2 1/2 - 19/8`
`=> 3/16 - x =1/8`
`=> x = 3/16 - 1/8`
`=> x = 1/16`
Vậy, `x = 1/16`
`2,`
`1/2* (1/6 - 9/10) = 1/5 - x + (1/15 - (-1)/5)`
`=> 1/2 * (-11/15) = 1/5 - x + 4/15`
`=> -11/30 = x + 1/5 - 4/15`
`=> x + (-1/15) = -11/30`
`=> x = -11/30 + 1/15`
`=> x = -3/10`
Vậy, `x = -3/10.`
Bài làm
\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=\frac{84}{12}+\left(\frac{7}{12}-\frac{6}{12}+\frac{36}{12}\right)-\left(\frac{1}{12}+\frac{60}{12}\right)\)
\(=\frac{84}{12}+\frac{37}{12}-\frac{61}{12}\)
\(=\frac{60}{12}\)
\(=5\)
# Chúc bạn học tốt #
a , \(\frac{7}{8}:\frac{1}{6}+\frac{7}{8}.\frac{-7}{18}\)
= \(\frac{21}{4}+\frac{-49}{144}=\frac{707}{144}\)
b, -1 : (-5) + \(\frac{1}{15}-\frac{-1}{15}\)
= \(\frac{1}{5}+0=\frac{1}{5}\)
c, \(\frac{9}{10}-\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
= \(\frac{9}{10}-\frac{10-9}{10.9}-\frac{9-8}{9.8}-\frac{8-7}{8.7}-\frac{7-6}{7.6}-\frac{6-5}{6.5}-\frac{5-4}{5.4}-\frac{4-3}{4.3}-\frac{3-2}{3.2}.\frac{2-1}{2.1}\)
= \(\frac{9}{10}-1-\frac{1}{10}-1-\frac{1}{9}-1-\frac{1}{8}-1-\frac{1}{7}-1-\frac{1}{6}-1-\frac{1}{5}-1-\frac{1}{4}-1-\frac{1}{3}-1-\frac{1}{2}\)
= \(\frac{9}{10}-\left(1+1+1+1+1+1+1+1+1\right)-\left(\frac{1}{10}+\frac{1}{9}+\frac{1}{8}+...+\frac{1}{2}\right)\)
= \(\frac{9}{10}-9-1,928=\frac{9}{10}-7,071=-6.171\)
Bài 1 :
\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< ..................< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{7}{12}< .....................< \dfrac{1}{48}-\left(\dfrac{-5}{48}\right)\)
\(\Leftrightarrow\dfrac{5}{12}< .............< \dfrac{1}{8}\)
\(\Leftrightarrow0,41\left(6\right)< ...........< 0,125\)
\(\Leftrightarrow\) ko tìm dc số nguyên thích hợp vào chỗ chấm
\(A=\dfrac{9}{8}-\dfrac{8}{9}+\dfrac{3}{24}+\dfrac{1}{4}-\dfrac{5}{16}+\dfrac{19}{25}-\dfrac{1}{9}+\dfrac{2}{25}-\dfrac{1}{81}\)
\(=\dfrac{9}{8}+\dfrac{1}{4}-\dfrac{5}{16}+\dfrac{1}{8}-\dfrac{8}{9}-\dfrac{1}{9}-\dfrac{1}{81}+\dfrac{19}{25}+\dfrac{2}{25}\)
\(=\dfrac{10}{8}+\dfrac{1}{4}-\dfrac{5}{16}-1-\dfrac{1}{81}+\dfrac{21}{25}\)
\(=\dfrac{20+4-5}{16}-\dfrac{82}{81}+\dfrac{21}{25}\)
\(=\dfrac{19}{16}-\dfrac{82}{81}+\dfrac{21}{25}\)
\(=\dfrac{32891}{16\cdot81\cdot25}\)
b: \(B=-\dfrac{1}{3}-\dfrac{8}{35}-\dfrac{2}{9}-\dfrac{1}{35}+\dfrac{4}{5}-\dfrac{4}{9}+\dfrac{3}{7}\)
\(=\dfrac{-1}{3}-\dfrac{2}{9}-\dfrac{4}{9}-\dfrac{8}{35}-\dfrac{1}{35}+\dfrac{4}{5}+\dfrac{3}{7}\)
\(=\dfrac{-3-2-4}{9}+\dfrac{-9}{35}+\dfrac{28+15}{35}\)
\(=-1+\dfrac{-9+43}{35}=-1+\dfrac{34}{35}=-\dfrac{1}{35}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100^2}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{100^2}\)
\(B=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)\cdot...\cdot\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)\cdot...\cdot\left(100\cdot100\right)}\)
\(B=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(B=\frac{1\cdot101}{100\cdot2}=\frac{101}{200}\)
S = 1 - 1/2² - 1/3² - 1/4² -.. - 1/100²
- - -
Có: 1/k² < 1/(k-1)k = 1/(k-1) - 1/k (với mọi k nguyên, k > 1)
1/2² < 1 /1.2 = 1/1 - 1/2
1/3² < 1 /2.3 = 1/2 - 1/3
...
1/10² < 1 /9.100 = 1/9 - 1/100
+ + + cộng vế lại + + +
1/2² + 1/3² +..+ 1/10² < 1 - 1/100
=> -1/2² - 1/3² - .. - 1/100² > -1 + 1/100
=> 1 - 1/2² - 1/3² - .. - 1/100² > 1/100 > 0 (đpcm)
♥Tomato♥
Cho công thức tổng quát: A^2 - B^2 = (A+B).(A-B)
Thế vào bài của bạn(nhưng mà số cuối là số mấy, mình cho đại nhé)
A = (1-1/4)x(1-1/9)x(1-1/16)x(1-1/25)x(1-1/3...
= (1+1/2) x (1-1/2) x (1+1/3) x (1-1/3) x...x (1+1/n) x (1-1/n)
= (1+1/2) x (1+1/3) x (1+1/4) x ... x [1 + 1/(n-1) ] x (1 + 1/n)
x (1-1/2) x (1-1/3) x (1-1/4) x ... x [1 - 1/(n-1) ] x (1 - 1/n)
= 3/2 x 4/3 x 5/4 x ... x [ n/(n-1) ] x [ (n+1)/n ]
x 1/2 x 2/3 x 3/4 x ... x [ (n-2)/(n-1) ] x [ (n-1)/n]
Tới đây bạn có thấy số dưới là phân số ngược phân số trên ko. mà hai phân số ngược nhân nhau = 1, vậy dãy A sẽ là:
A = 1/2 x 2/3 x 3/2 x 3/4 x 4/3 x 4/5 x 5/4 x .... x [ (n-2)x(n-1) ] x [ (n-1)/n] x [ n/(n-1)] x [ (n+1)/n]
= 1/2 x 1 x 1 x 1 x ... x 1 x [(n+1)/n]
= 1/2 x (n+1)/n
Tk mk nha
Mk nhanh nhất đó
Thankk you very much
( ^ _ ^ )