Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... + 39 x 40
3S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + 4 x 5 x 3 + ... + 39 x 40 x 3
3S = 1x2x3 + 2x3x(4-1 ) + 3x4x(5-2 ) + 4x5x(6-3 ) + ... + 39x40x(41-38 )
3S = 1 x 2x3 + 2x3x4-1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 39x40x31 - 38x39x40
3S = 39x40x41
S = 39x40x41 : 3
S = 21320
S=1*2+ 2*3 + 3*4 +.....+ 39*40
S= 2 + 6+ 12 + ....+ 1560
S= 2 + 0 + 4 + 2 +6 + 4 + 2+ ....... + 1554 + 4 +2
S= 2 + 0 + 6 +6 + 6 + ....... +1554 + 6
S= 2 + ( 0 + 6 + ..... +1554)+ ( 6 * ((1554-0):6+1))
S = 2 + 202020 + 1560
S = 203582
S = 1 * 2 + 2 * 3 + 3 * 4 + ... + 38 * 39 + 39 * 40
=> 3S = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 +... + 38 . 39 . 3 + 39 . 40 . 3
=> 3S = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + ... + 38 . 39 . ( 40 - 37 ) + 39 . 40 . ( 41 - 38 )
=> 3S = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 .3 + 3 . 4. 5 - 2 . 3 .4 + ... + 38 . 39 . 40 - 37 . 38 . 39 + 39 . 40 . 41 - 38 . 39 . 40
=> 3S = 39 . 40 . 41
=> 3S = 63960
=> S = 21320
Vậy S là 21320
Ta có
S=1.2+2.3+....+39.40S=1.2+2.3+....+39.40
⇒3S=1.2(3−0)+2.3(4−1)+....+39.40(41−38)⇒3S=1.2(3−0)+2.3(4−1)+....+39.40(41−38)
⇒3S=1.2.3−0.1.2+2.3.4−1.2.3+....+39.40.41−38.39.40⇒3S=1.2.3−0.1.2+2.3.4−1.2.3+....+39.40.41−38.39.40
⇒ S = 39.40.41/3 ⇒ S = 39.40.41/3
=> S = 21320
Vậy S = 21320
3 x 15 + 21 x 15 + 85 x 5
= 45 + 315 + 425
= 785
15 - 30 + 40
= 25
21 + 19 - 50 + 10
= 0
\(\dfrac{1}{5}-\dfrac{1}{4}+2\)
\(=-\dfrac{1}{20}+2\)
\(=\dfrac{39}{20}\)
\(\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\)
\(=\dfrac{5}{12}\times\dfrac{1}{4}\)
\(=\dfrac{5}{12}\times\dfrac{3}{12}\)
\(=\dfrac{5}{48}\)
\(\dfrac{1}{10}+\dfrac{1}{5}-\dfrac{3}{4}\)
\(=-\dfrac{9}{20}\)
\(3\times15+21\times15+85\times5\\ =15\times\left(3+21\right)+425\\ =15\times24+425\\ =360+425\\ =785\)
\(15-30+40\\ =\left(15+40\right)-30\\ =55-30\\ =25\)
\(21+19-50+10\\ =\left(21+19\right)-\left(50-10\right)\\ =40-40\\ =0\)
\(\dfrac{1}{5}-\dfrac{1}{4}+2\)
\(=\dfrac{4}{20}-\dfrac{5}{20}+\dfrac{40}{20}\)
\(=\dfrac{\left(4+40\right)}{20}-\dfrac{5}{20}\)
\(=\dfrac{44}{20}-\dfrac{5}{20}\)
\(=\dfrac{39}{20}\)
\(\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\times\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\)
\(=\dfrac{5}{12}\times\dfrac{1}{4}\)
\(=\dfrac{5}{48}\)
\(\dfrac{1}{10}+\dfrac{1}{5}-\dfrac{3}{4}\)
\(=\dfrac{2}{20}+\dfrac{4}{20}-\dfrac{15}{20}\)
\(=\dfrac{6}{20}-\dfrac{15}{20}\)
\(=-\dfrac{9}{20}\)
\(\frac{70}{3}\left(\frac{39}{30}+\frac{39}{42}\right)-\frac{246}{7}\div\left(\frac{41}{56}+\frac{41}{72}\right)\)
\(=\frac{70}{3}\left(\frac{13}{10}+\frac{13}{14}\right)-\frac{246}{7}\div\left(\frac{41}{7\cdot8}+\frac{41}{8\cdot9}\right)\)
\(=\frac{70}{3}\left(1+\frac{3}{10}+1-\frac{1}{14}\right)-\frac{246}{7}\div\left(\frac{40+1}{7\cdot8}+\frac{40+1}{8\cdot9}\right)\)
\(=\frac{70}{3}\left[\left(1+1\right)+\left(\frac{3}{10}-\frac{1}{14}\right)\right]-\frac{246}{7}\div\left(\frac{5}{7}+\frac{1}{7\cdot8}+\frac{5}{9}+\frac{1}{8\cdot9}\right)\)
\(=\frac{70}{3}\left(2+\frac{8}{35}\right)-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)\right]\)
\(=\frac{70}{3}\cdot\frac{78}{35}-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\right]\)
\(=\frac{35\cdot2\cdot26\cdot3}{3\cdot35}-\frac{246}{7}\div\left(\frac{5}{7}+\frac{5}{9}+\frac{1}{7}-\frac{1}{9}\right)\)
\(=52-\frac{246}{7}\div\left[\left(\frac{5}{7}+\frac{1}{7}\right)+\left(\frac{5}{9}-\frac{1}{9}\right)\right]\)
\(=52-\frac{246}{7}\div\left(\frac{6}{7}+\frac{4}{9}\right)\)
\(=52-\frac{246}{7}\div\frac{82}{63}\)
\(=52-\frac{82\cdot3\cdot9\cdot7}{7\cdot82}\)
\(=52-27=25\)
\(\frac{57}{20}-\frac{26}{15}+\frac{139}{20}\div3\)
\(=\frac{57}{20}-\frac{26}{15}+\frac{139}{60}\)
\(=\frac{171}{60}-\frac{104}{60}+\frac{139}{60}=\frac{103}{30}\)
\(\frac{39}{4}+\frac{2}{3}\left(11-\frac{23}{4}\right)\)
\(=\frac{39}{4}+11\cdot\frac{2}{3}-\frac{23}{4}\cdot\frac{2}{3}\)
\(=\frac{39}{4}+\frac{22}{3}-\frac{56}{12}\)
\(=\frac{119}{12}+\frac{88}{12}-\frac{56}{12}=\frac{151}{12}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2002}\right)\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2001}{2002}\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2001\cdot2002\cdot2003}{2\cdot3\cdot4\cdot...\cdot2002\cdot2003\cdot2004}=\frac{1}{2004}\)
Bài 1:
a) \(2\frac{1}{4}+1\frac{1}{2}-1\frac{4}{5}\)
=\(\frac{9}{4}\)+\(\frac{3}{2}\)-\(\frac{9}{5}\)
=\(\frac{45}{20}+\frac{30}{20}-\frac{36}{20}\)
=\(\frac{39}{20}\)
b) \(2\frac{2}{3}\times3\frac{1}{4}:2\frac{3}{4}\)
\(\frac{8}{3}\times\frac{13}{4}:\frac{11}{4}\)
=\(\frac{8}{3}\times\frac{13}{4}\times\frac{4}{11}\)
=\(\frac{104}{33}\)
Bài 2:
a) \(\frac{7}{9}+\frac{4}{5}+\frac{11}{9}+\frac{6}{5}\)
=\(\left(\frac{7}{9}+\frac{11}{9}\right)+\left(\frac{4}{5}+\frac{6}{5}\right)\)
=2+2
=4
b) \(\frac{21}{36}\times\frac{39}{14}\times\frac{54}{13}\)
=\(\frac{21\times39\times54}{36\times14\times13}\)
=\(\frac{675}{100}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\)\(\frac{1}{39\times40}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\)\(\frac{1}{39}-\frac{1}{40}\)
\(=\frac{1}{2}-\frac{1}{40}=\frac{19}{40}\)
kết quả của bạn sai rồi Đặng Tần Thùy Dương ạ