K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 12 2023

Lời giải:

Đặt $\frac{3x-1}{4}=\frac{7y-4}{5}=t\Rightarrow x=\frac{4t+1}{3}; y=\frac{5t+4}{7}$

Khi đó:
$t=\frac{3x+7y-5}{3x}=\frac{4t+1+(5t+4)-5}{4t+1}$

$\Rightarrow t=\frac{9t}{4t+1}$

$\Rightarrow t(4t+1)=9t$

$\Rightarrow t(4t+1-9)=0$

$\Rightarrow t(4t-8)=0$

$\Rightarrow t=0$ hoặc $t=2$

Đến đây bạn thay vào tìm x,y thôi.

15 tháng 9 2021

\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)

\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

⇒x=42,y=28,z=20

15 tháng 9 2021

\(\dfrac{x}{3}=\dfrac{y}{2}\)\(\dfrac{x}{15}=\dfrac{y}{10}\)

\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)\(\dfrac{x}{15}=\dfrac{2y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)

⇒x=48,y=32,z=336/5

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

18 tháng 6 2018

Bài 1:

1)

\(\dfrac{3x+2}{4}\) = \(\dfrac{5x-3}{3}\)

<=> 3(3x + 2) = 4(5x - 3)

<=> 9x + 6 = 20x - 12

<=> 6 +12 = 20x - 9x

<=> 11x = 18

<=> x = \(\dfrac{18}{11}\)

Vậy: x = \(\dfrac{18}{11}\)

2)

\(\dfrac{x-1}{3x+2}\)= \(\dfrac{1}{5}\)

<=> 5(x - 1) = 3x + 2

<=> 5x - 5 = 3x + 2

<=> 5x - 3x = 2 +5

<=> 2x = 7

<=> x = \(\dfrac{7}{2}\)

Vậy : x = \(\dfrac{7}{2}\)

18 tháng 6 2018

Bài 1 :

1) Ta có :

\(\dfrac{3x+2}{4}=\dfrac{5x-3}{3}\\ \Leftrightarrow4\cdot\left(5x-3\right)=3\cdot\left(3x+2\right)\\ \Leftrightarrow20x-12=9x+6\\ \Leftrightarrow20x-18=9x\\ \Leftrightarrow20x-9x=18\\ \Leftrightarrow11x=18\\ \Leftrightarrow x=\dfrac{18}{11}\\ Vậy.,...\)

2) Ta có :

\(\dfrac{x-1}{3x+2}=\dfrac{1}{5}\Leftrightarrow5\cdot\left(x-1\right)=3x+2\\ \Leftrightarrow5x-5=3x+2\\ \Leftrightarrow5x-3x-5=2\\ \Leftrightarrow2x-5=2\\ \Leftrightarrow2x=7\\ \Leftrightarrow x=\dfrac{7}{2}\)

Vậy ....

Bài 2 ;

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot3=9\\y=3\cdot4=12\end{matrix}\right.\\ Vậy...\)

2) Ta có : \(3x=5y\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{-16}{2}=-8\\ \Rightarrow\left\{{}\begin{matrix}x=-8\cdot5=-40\\y=-8\cdot3=-24\end{matrix}\right.\\ Vậy....\)

3) Ta có : \(4x=7y\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x^2}{7^2}=\dfrac{y^2}{4^2}=\dfrac{x\cdot y}{7\cdot4}\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{112}{28}=4\\ \Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=4\cdot4=16\end{matrix}\right.\\ Vậy...\)

24 tháng 7 2017

mn ơi giúp nhé

21 tháng 8 2017

giúp mik với.bucminhkhocroi

27 tháng 2 2017

\(\dfrac{3x-5y}{2}=\dfrac{7y-3z}{3}=\dfrac{5z-7x}{4}=\dfrac{21x-35y}{14}=\dfrac{35y-15z}{15}=\dfrac{15z-21x}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{3x-5y}{2}=\dfrac{7y-3z}{3}=\dfrac{5z-7x}{4}=\dfrac{21x-35y}{14}=\dfrac{35y-15z}{15}=\dfrac{15z-21x}{12}=\dfrac{21x-35y+35y-15z+15z-21x}{14+15+12}=\dfrac{0}{41}=0\)

=>3x-5y=7y-3z=5z-7x=0

3x-5y=0 <=> 3x=5y <=> \(\dfrac{x}{5}=\dfrac{y}{3}\) (1)

7y-3z=0 <=> 7y=3z <=> \(\dfrac{y}{3}=\dfrac{z}{7}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{7}=\dfrac{x+y+z}{5+3+7}=\dfrac{17}{15}\)

=>\(x=\dfrac{17}{15}.5=\dfrac{17}{3};y=\dfrac{17}{15}.3=\dfrac{17}{5};z=\dfrac{17}{15}.7=\dfrac{119}{15}\)

Vậy ...........

AH
Akai Haruma
Giáo viên
30 tháng 12 2023

Lời giải:

$\frac{7x+5y}{3x-5y}=\frac{7z+5t}{3z-5t}$

$\Rightarrow (7x+5y)(3z-5t)=(7z+5t)(3x-5y)$

$\Rightarrow 21xz-35xt+15yz-25yt = 21xz-35yz+15xt-25yt$

$\Rightarrow -35xt+15yz=-35yz+15xt$

$\Rightarrow -50xt=-50yz$

$\Rightarrow xt=yz\Rightarrow \frac{x}{y}=\frac{z}{t}$