Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1/x - 1/(x+1) = 1/x(x+1)
<=> pcm \(\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
<=> pcm \(\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
<=> pcm 1/x(x+1) = 1/x(x+1)
Đây là điều luôn đúng nên ta có điều phải chứng minh
Chú ý : Chữ pcm là phải chứng minh
Ta có : \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}\)
\(+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
Áp dụng chứng minh trên ta có :
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
=1/x
a: \(=\dfrac{6}{x+1}+\dfrac{4}{x-1}-\dfrac{10}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{6x-6+4x+4-10}{\left(x-1\right)\left(x+1\right)}=\dfrac{10x-12}{\left(x-1\right)\left(x+1\right)}\)
b: \(=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{6}{x}=\dfrac{1}{x}+\dfrac{6}{x}=\dfrac{7}{x}\)
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
Tính:
a, \(\dfrac{x-1}{x+2}+\dfrac{x+5}{x+2}=\dfrac{x-1+x+5}{x-2}=\dfrac{2x+4}{x-2}\) = \(\dfrac{2\left(x+2\right)}{x-2}\)
b, \(\dfrac{1}{x\left(x-1\right)}-\dfrac{2-x}{x-1}=\dfrac{1}{x\left(x-1\right)}-\dfrac{x\left(2-x\right)}{x\left(x-1\right)}=\dfrac{1-2x+x^2}{x\left(x-1\right)}=\dfrac{x^2-2x+1}{x\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{x\left(x-1\right)}=\dfrac{x-1}{x}\)
a) (x - 1) (x2 + x + 1) - (x + 1) (x2 - x + 1) + 2(x - 1) (x + 1) - 2(x + 2)2
= x3 - 1 - x3 - 1 + 2(x2 - 1) - 2(x2 + 4x + 4)
= -2 + 2x2 - 2 - 2x2 - 8x - 8
= -12
\(S=\frac{1}{x\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\)
\(=\frac{1}{2}\left[\frac{2}{x\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{2}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\right]\)
\(=\frac{1}{2}\left[\frac{x+2-x}{x\left(x+1\right)\left(x+2\right)}+\frac{\left(x+3\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}+...+\frac{\left(x+10\right)-\left(x+8\right)}{\left(x+8\right)\left(x+9\right)\left(x+10\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+8\right)\left(x+9\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+9\right)\left(x+10\right)}\right]\)
(x - 1)(x + 1)(x + 2)
= (x^2 - 1).(x + 2)
= x^2.x + 2.x^2 - x - 2
= x^3 + 2x^2 - x - 2