Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(k=\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.\left(3^2\right)^2}{3^5.\left(2^4\right)^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{8.1}{3.1}=\frac{8}{3}\)
b) \(N=\frac{9^3.27^2}{6^2.3^{10}}=\frac{\left(3^2\right)^3.\left(3^3\right)^2}{\left(2.3\right)^2.3^{10}}=\frac{3^6.3^6}{2^2.3^2.3^{10}}=\frac{3^{12}}{4.3^{12}}=\frac{1}{4}\)
a) \(K=\frac{2^{11}\cdot9^2}{3^5\cdot16^2}=\frac{2^{11}\cdot3^4}{3^5\cdot2^8}=\frac{2^3}{3}=\frac{8}{3}\)
b) \(N=\frac{9^3\cdot27^2}{6^2\cdot3^{10}}=\frac{3^6\cdot3^6}{2^2\cdot3^2\cdot3^{10}}=\frac{1}{4}\)
c) \(P=\frac{27^{15}\cdot5^3\cdot8^4}{25^2\cdot81^{11}\cdot2^{11}}=\frac{3^{45}\cdot5^3\cdot2^{12}}{5^4\cdot3^{44}\cdot2^{11}}=\frac{3\cdot2}{5}=\frac{6}{5}\)
\(A=\dfrac{\left(-3\right)^{45}\cdot5^3\cdot2^{12}}{5^4\cdot3^{44}\cdot\left(-2\right)^{11}}=\dfrac{\left(-3\right)^{45}\cdot\left(-2\right)^{12}}{5\cdot\left(-3\right)^{44}\cdot\left(-2\right)^{11}}=\dfrac{\left(-3\right)\cdot\left(-2\right)}{5}=\dfrac{6}{5}\)
a) \(\left(1,25\right)^3.8^3=\left(1,25.8\right)^3=1000\)
b) \(\left(\dfrac{-11}{9}\right)^4.\left(\dfrac{27}{22}\right)^4=\left(\dfrac{-11}{9}.\dfrac{27}{22}\right)^4=\left(\dfrac{-11.9.3}{9.2.\left(-11\right)}\right)^4\)
\(=\left(\dfrac{3}{2}\right)^4=\dfrac{81}{16}\)
c) \(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{13}{14}\right)^2=\dfrac{169}{196}\)
d) \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=100^{-1}=0,01\)
\(\frac{y}{12}=\frac{x}{4}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}.\)
Từ đó tính được x và y => Z
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{x}{4}=\frac{y}{12}=\frac{y-x}{12-4}=\frac{4}{8}=\frac{1}{2}\)
Do đó : \(\hept{\begin{cases}\frac{x}{4}=\frac{1}{2}\\\frac{y}{12}=\frac{1}{2}\\\frac{z}{15}=\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=7,5\end{cases}}\)
Vậy .........
\(\frac{2^{15}.9^4}{6^3.8^3}\)=\(\frac{2^{15}.\left(3^2\right)^3}{\left(2.3\right)^3.\left(2^3\right)^3}\)=\(\frac{2^{15}.3^6}{2^3.3^3.2^9}\)=\(\frac{2^{15}.3^6}{2^{12}.3^3}\)=\(2^3.3^3\)=8.27=216
\(\dfrac{\text{45^{10^{ }}}.5^{10}}{75^{10}}=\dfrac{9^{10}.5^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}=\dfrac{9^{10}}{3^{10}}=3^{10}\)
\(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}=\dfrac{2^5.\left(0,4\right)^5}{\left(0,4\right)^6}=\dfrac{2^5}{0,4}=\dfrac{32}{0,4}=80\)
Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{2x}{6}=\frac{5y}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{26}=\frac{5}{13}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{5}{13}\\\frac{y}{4}=\frac{5}{13}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{15}{13}\\y=\frac{20}{13}\end{cases}}\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}\) và \(2x+5y=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{4}=\frac{2x+5y}{2.3+5.4}=\frac{10}{26}=\frac{5}{13}\)
\(\hept{\begin{cases}\frac{x}{3}=\frac{5}{13}\Rightarrow x=\frac{5}{13}.3=\frac{15}{13}\\\frac{y}{4}=\frac{5}{13}\Rightarrow y=\frac{5}{13}.4=\frac{20}{13}\end{cases}}\)
Vậy \(x=\frac{15}{13};y=\frac{20}{13}\)
\(a,\) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}.3^{10}+\left(2.3\right)^9.2^3.3.5}{2^{12}.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{\left(2^{12}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(=\frac{\left(2^{12}.3^{10}\right).6}{\left(2^{11}.3^{11}\right).5}\)
\(=\frac{2.6}{3.5}\)
\(=\frac{2.2}{5}\)
\(=\frac{4}{5}\)
\(b,\) \(\frac{2^{15}.9^4}{6^3.8^3}\)
\(=\frac{2^{15}.3^8}{2^3.3^3.2^9}\)
\(=\frac{2^{15}.3^8}{2^{12}.3^3}\)
\(=2^3.3^5\)
\(=8.243\)
\(=1944\)
Chúc bạn học tốt ^^
a) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+6^9.120}{\left(2^3\right)^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+6^9.120}{2^{12}.3^{12}-6^{11}}=\frac{6^{10}.4+6^{10}.20}{6^{12}-6^{11}}=\frac{6^{10}.\left(4+20\right)}{6^{11}.\left(6-1\right)}=\frac{6^{11}.4}{6^{11}.5}=\frac{4}{5}\)
b) \(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=1944\)
c) \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(4.2\right)^{10}+4^{10}}{\left(2^3\right)^4+4^6.4^5}=\frac{4^{10}.2^{10}+4^{10}}{2^{12}+4^6.4^5}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.2^{10}}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(1+2^{10}\right)}=\frac{4^{10}}{4^6}=4^4=256\)
\(\dfrac{27^{15}.5^3.8^4}{25^2.81^{11}.2^{11}}\)
= \(\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}\)
= \(\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}\)
= \(\dfrac{3.1.2}{5.1.1}\)
= \(\dfrac{6}{5}\)