Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{870}\)
\(A=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{29\cdot30}\)
\(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{29}-\frac{1}{30}\)
\(A=\frac{1}{3}-\frac{1}{30}\)
\(A=\frac{3}{10}\)
\(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+..........+\frac{1}{870}\)
\(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+................+\frac{1}{29.30}\)
\(=\frac{1}{3}-\frac{1}{30}\)
\(=\frac{9}{30}=\frac{3}{10}\)
từ đầu bài ta có
1 phần 6 cộng một phần12 cộng..... cộng một phần 42
=1phần 2.3 +1 phần 3.4 +....+1 phần6.7
=1 phần2 -(1 phần 3 +1 phần 3)...........-(1 phần 6 +1 phần 6)-1 phần 7
1 phần 2 -1 phần 7
=5 phần 14
2/ \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=6-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=6-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=6-\left(1-\frac{1}{7}\right)\)
\(=6-\frac{6}{7}=\frac{36}{7}\)
1, \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)\)
\(=\left(1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\right)\)
\(=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)
\(=4-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)\)
\(=4-\left(1-\frac{1}{5}\right)\)
\(=4-\frac{4}{5}=\frac{16}{5}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{45.46}\)
\(\Rightarrow S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{45.46}\)
\(\Rightarrow S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{45}-\frac{1}{46}\)
\(\Rightarrow S=1-\frac{1}{46}\)
\(\Rightarrow S=\frac{45}{46}\)
Bài làm
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{45.46}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{45.46}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{45}-\frac{1}{46}\)
\(S=\frac{1}{1}-\frac{1}{46}\)
\(S=\frac{46}{46}-\frac{1}{46}\)
\(S=\frac{45}{46}\)
Vậy \(S=\frac{45}{46}\)
# Học tốt #
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}...-\frac{1}{6}-\frac{1}{2}\)
= \(\frac{8}{9}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\right)\)
= \(\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}\right)\)
= \(\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
= \(\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
= \(\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
= \(\frac{8}{9}-\frac{8}{9}\)
= \(0\)
"girl cute" là sai rồi bạn ơi, trong tiếng anh, tính từ (cute) phải đứng trước danh tư (girl).
Đặt \(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{2}-\frac{1}{10}\)
\(A=\frac{2}{5}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}+0+0+...+0\)
\(=\frac{2}{5}\)
~ Ủng hộ nhé anh chị em ~
B = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
B = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)+ \(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
B = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\)\(\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
B = \(\frac{1}{2}-\frac{1}{10}\)
B = \(\frac{2}{5}\)
B=1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
B=1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
B=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
B=1/2-1/10
B=2/5
\(=\frac{1}{90}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\right)=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\left(\frac{9}{9}-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=\frac{1}{90}-\frac{80}{90}=-\frac{79}{90}\)
Ta có:
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{870}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{29.30}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....+\frac{1}{29}-\frac{1}{30}\)
\(=\frac{1}{2}-\frac{1}{30}=\frac{15}{30}-\frac{1}{30}=\frac{14}{30}=\frac{7}{15}\)
Vậy \(A=\frac{7}{15}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{870}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{29.30}\)
\(A=\frac{1}{2}-\frac{1}{30}\)
\(A=\frac{7}{15}\)