Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 : dễ mà
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
1 phần 1 - 1 phần 2 = 1 phần 1.2 mà tương tự như thế đó
=> 1 - 1 phần n+1
đS
\(\frac{1}{1.2}+\frac{1}{2.3}+..........+\frac{1}{n.\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
\(=\frac{n}{n+1}\)
Bài 2:Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};.................;\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{\left(n-1\right).n}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{n-1}-\frac{1}{n}\)
=\(1-\frac{1}{n}<1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{n^2}<1\)
bai 1: 1-1/2+1/2-1/3+1/3-1/4+...+1/n+1/n+1=1-1/n+1
bai 2: mk chua biet lam
M=3+32+33+...+3n
=>3M=32+33+34+...+3n+1
=>3M-M=3n+1-3
=>2M=3n+1-3
=>M=\(\frac{3^{n+1}-3}{2}\)
\(N=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
=>3N\(=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)
=>3N-N=\(1-\frac{1}{3^n}\)
=>2N=\(1-\frac{1}{3^n}\Rightarrow N=\frac{1-\frac{1}{3^n}}{2}\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~