Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+1+2+3+5+8.......+89
Ta se ket hop cho dau tien vao
1+1=2
2+2=4
4+3=7
7+5=12
12+8=20
Vay chung ta se co ket qua la 20
Lay 89 tru 20 bang 69 na
Vay : 1+1+2+3+5+8+69+89 = 178
Dung thi k cho minh con sai thi thoi nha
Minh hoc lop 3
Bài 1:
b) Ta có: \(D=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
\(=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot0\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
=0
Đề bài sai rồi nha bn, p/s thứ 3 fai là 1/21 ms đúng
D = 1/10 + 1/15 + 1/21 + ... + 1/120
D = 2 × (1/20 + 1/30 + 1/42 + ... + 1/240)
D = 2 × (1/4×5 + 1/5×6 + 1/6×7 + .... + 1/15×16)
D = 2 × (1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/15 - 1/16)
D = 2 × (1/4 - 1/16)
D = 2 × (4/16 - 1/16)
D = 2 × 3/16
D = 3/8
S = 100^2+200^2+300^2+.....+1000^2
S=100^2+(100.2)^2+(100.3)^2+....+(100....
S = 100^2(1^2+2^2+3^2+...+10^2)
S=100^2.385
S=3850000
A=1002+2002+3002+...+10002=(100*1)2+(100*2)2+(100*3)2+...+(100*10)2
=1002*12+1002*22+...+1002*102
=1002(12+22+...+102)=10 000*385=3 850 000
`Answer:`
\dfrac15+\dfrac1{5+10}+\dfrac1{5+10+15}\ +\,.\!.\!.+\ \dfrac1{5+10+15\ +\,.\!.\!.+\ 100}\\=\dfrac15+\dfrac1{5.(1+2)}+\dfrac1{5.(1+2+3)}\ +\,.\!.\!.+\ \dfrac1{5.(1+2+3\ +\,.\!.\!.+\ 20)}\\=\dfrac15\left(1+\dfrac1{1+2}+\dfrac1{1+2+3}\ +\,.\!.\!.+\ \dfrac1{1+2+3\ +\,.\!.\!.+\ 20}\right)\\=\dfrac15\bigg(\dfrac22+\dfrac26+\dfrac2{12}\ +\,.\!.\!.+\ \dfrac2{20.21}\bigg)\\=\dfrac25\left(\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}\ +\,.\!.\!.+\ \dfrac1{20.21}\right)\\=\dfrac25\left(1-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14\ +\,.\!.\!.+\ \dfrac1{20}-\dfrac1{21}\right)\\=\dfrac25\left(1-\dfrac1{21}\right)\\=\dfrac25\!\cdot\!\dfrac{20}{21}\\=\dfrac8{21}
`Answer:`
Mình gửi lại bài nhé. Mong lần này không bị lỗi như lần trước.
\(\dfrac15+\dfrac1{5+10}+\dfrac1{5+10+15}\ +\,.\!.\!.+\ \dfrac1{5+10+15\ +\,.\!.\!.+\ 100}\\=\dfrac15+\dfrac1{5.(1+2)}+\dfrac1{5.(1+2+3)}\ +\,.\!.\!.+\ \dfrac1{5.(1+2+3\ +\,.\!.\!.+\ 20)}\\=\dfrac15\left(1+\dfrac1{1+2}+\dfrac1{1+2+3}\ +\,.\!.\!.+\ \dfrac1{1+2+3\ +\,.\!.\!.+\ 20}\right)\\=\dfrac15\bigg(\dfrac22+\dfrac26+\dfrac2{12}\ +\,.\!.\!.+\ \dfrac2{20.21}\bigg)\\=\dfrac25\left(\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}\ +\,.\!.\!.+\ \dfrac1{20.21}\right)\\=\dfrac25\left(1-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14\ +\,.\!.\!.+\ \dfrac1{20}-\dfrac1{21}\right)\\=\dfrac25\left(1-\dfrac1{21}\right)\\=\dfrac25\!\cdot\!\dfrac{20}{21}\\=\dfrac8{21}\)
Ta có :\(A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}:0,5+2:\left(-0,4\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)
\(\Leftrightarrow A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}:\frac{1}{2}+2:\left(-\frac{2}{5}\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)\(\Leftrightarrow A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}.2+2.\left(-\frac{5}{2}\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)\(\Leftrightarrow A=\left(5+10+...+1000\right).\left\{2.\left(\frac{2}{5}-\frac{5}{2}\right)\right\}.\left(5+10+...+1000\right)\)
\(\Leftrightarrow A=\left(5+10+...+1000\right).\left(5+10+...+1000\right).-\frac{21}{10}\)
Ta có : Số số hạng của dãy số : \(5+10+...+1000\) là :
\(\left(1000-5\right):5+1=200\)
\(\Rightarrow\) Tổng của dãy số : \(5+10+...+1000\) là :
\(\frac{\left(5+1000\right).200}{2}=100500\)
\(\Rightarrow A=100500.100500.\left(-\frac{21}{10}\right)\)
\(\Rightarrow A=100500^2.\left(-\frac{21}{10}\right)\)
\(\Rightarrow A=\frac{100500^2.\left(-21\right)}{10}\)
Vậy :\(A=\frac{100500^2.\left(-21\right)}{10}\)
P/s: Số to quá nên mình đề dưới dạng phân số, không tính ra kết quả cụ thể.