Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : (ghi lại đề)
=6+12+18+24+30/3+6+9+12+15
=2*(3/3+6/6+9/9+12/12+15/15)
=2*(1+1+1+1+1)
=2*5=10
chúc main học tốt nhé
1. ta có 5-10+15-20-30
=(5+15)+(-10-20-30)
=20+(-60)
=-40
2.lấy máy tính ra mà tính
a) Dấu hiệu là điểm bài thi học kì của 100 học sinh lớp 7 của một trường Trung học Cơ Sở Hòa Bình. Số các dấu hiệu là 100
b) Bảng tần số
Giá trị (x) | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
Tần số (n) | 2 | 1 | 2 | 4 | 6 | 8 | 9 | 10 | 13 | 11 | 8 | 8 | 4 | 6 | 3 | 2 | 3 | 1 | N=100 |
Nhận xét: Giá trị lớn nhất là 19, giá trị nhỏ nhất là 1; tần số lớn nhất là 13, tần số nhỏ nhất là 1.
Ta có :\(A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}:0,5+2:\left(-0,4\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)
\(\Leftrightarrow A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}:\frac{1}{2}+2:\left(-\frac{2}{5}\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)\(\Leftrightarrow A=\left(5+10+15+...+1000\right).\left\{\frac{2}{5}.2+2.\left(-\frac{5}{2}\right)\right\}:\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1000}\right)\)\(\Leftrightarrow A=\left(5+10+...+1000\right).\left\{2.\left(\frac{2}{5}-\frac{5}{2}\right)\right\}.\left(5+10+...+1000\right)\)
\(\Leftrightarrow A=\left(5+10+...+1000\right).\left(5+10+...+1000\right).-\frac{21}{10}\)
Ta có : Số số hạng của dãy số : \(5+10+...+1000\) là :
\(\left(1000-5\right):5+1=200\)
\(\Rightarrow\) Tổng của dãy số : \(5+10+...+1000\) là :
\(\frac{\left(5+1000\right).200}{2}=100500\)
\(\Rightarrow A=100500.100500.\left(-\frac{21}{10}\right)\)
\(\Rightarrow A=100500^2.\left(-\frac{21}{10}\right)\)
\(\Rightarrow A=\frac{100500^2.\left(-21\right)}{10}\)
Vậy :\(A=\frac{100500^2.\left(-21\right)}{10}\)
P/s: Số to quá nên mình đề dưới dạng phân số, không tính ra kết quả cụ thể.
`Answer:`
\dfrac15+\dfrac1{5+10}+\dfrac1{5+10+15}\ +\,.\!.\!.+\ \dfrac1{5+10+15\ +\,.\!.\!.+\ 100}\\=\dfrac15+\dfrac1{5.(1+2)}+\dfrac1{5.(1+2+3)}\ +\,.\!.\!.+\ \dfrac1{5.(1+2+3\ +\,.\!.\!.+\ 20)}\\=\dfrac15\left(1+\dfrac1{1+2}+\dfrac1{1+2+3}\ +\,.\!.\!.+\ \dfrac1{1+2+3\ +\,.\!.\!.+\ 20}\right)\\=\dfrac15\bigg(\dfrac22+\dfrac26+\dfrac2{12}\ +\,.\!.\!.+\ \dfrac2{20.21}\bigg)\\=\dfrac25\left(\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}\ +\,.\!.\!.+\ \dfrac1{20.21}\right)\\=\dfrac25\left(1-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14\ +\,.\!.\!.+\ \dfrac1{20}-\dfrac1{21}\right)\\=\dfrac25\left(1-\dfrac1{21}\right)\\=\dfrac25\!\cdot\!\dfrac{20}{21}\\=\dfrac8{21}
`Answer:`
Mình gửi lại bài nhé. Mong lần này không bị lỗi như lần trước.
\(\dfrac15+\dfrac1{5+10}+\dfrac1{5+10+15}\ +\,.\!.\!.+\ \dfrac1{5+10+15\ +\,.\!.\!.+\ 100}\\=\dfrac15+\dfrac1{5.(1+2)}+\dfrac1{5.(1+2+3)}\ +\,.\!.\!.+\ \dfrac1{5.(1+2+3\ +\,.\!.\!.+\ 20)}\\=\dfrac15\left(1+\dfrac1{1+2}+\dfrac1{1+2+3}\ +\,.\!.\!.+\ \dfrac1{1+2+3\ +\,.\!.\!.+\ 20}\right)\\=\dfrac15\bigg(\dfrac22+\dfrac26+\dfrac2{12}\ +\,.\!.\!.+\ \dfrac2{20.21}\bigg)\\=\dfrac25\left(\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}\ +\,.\!.\!.+\ \dfrac1{20.21}\right)\\=\dfrac25\left(1-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14\ +\,.\!.\!.+\ \dfrac1{20}-\dfrac1{21}\right)\\=\dfrac25\left(1-\dfrac1{21}\right)\\=\dfrac25\!\cdot\!\dfrac{20}{21}\\=\dfrac8{21}\)