Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.
\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)
\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)
\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)
\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)
Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)
\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)
Cộng theo vế ta được
\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)
Vậy GTNN của A là \(\frac{81}{2}.\)
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)
\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)
Ta có
\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)
\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)
\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)
\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
Ta có:
\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)\)
\(=\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b+c\right)\)(1)
\(b^2+ab-c^2-ac=\left(b^2-c^2\right)+\left(ab-ac\right)\)
\(=\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\)
\(=\left(b-c\right)\left(a+b+c\right)\)(2)
\(c^2+bc-a^2-ab=\left(c^2-a^2\right)+\left(bc-ab\right)\)
\(=\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\)
\(=\left(c-a\right)\left(a+b+c\right)\)(3)
Ta có : \(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}\)\(+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}\)\(+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)(*)
Thế (1),(2),(3) vào (*)
=>\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{\left(c-a\right)+\left(a-b\right)+\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
Dễ thôi bạn chỉ cần quy đồng thôi
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\)\(\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
=\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)\(+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
=\(\frac{c-a+a-b+b-c}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}=0\)
Ta có :\(\left(a-b\right)\left(c^2+bc-a^2-ab\right)=\left(a-b\right)\left[\left(c^2-a^2\right)+\left(bc-ab\right)\right]\)
\(=\left(a-b\right)\left(c-a\right)\left(a+b+c\right)\)
Tương tự : \(\left(b-c\right)\left(a^2+ac-b^2-bc\right)=\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)
\(\left(c-a\right)\left(b^2+ab-c^2-ac\right)=\left(c-a\right)\left(b-c\right)\left(a+b+c\right)\)
\(MTC=\left(a-b\right)\left(b-c\right)\left(c-s\right)\left(a+b+c\right)\)
Kí hiệu biểu thức đã cho bởi \(Q\),ta có :
\(Q=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
\(=\frac{c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(+\frac{b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=0\)