K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

Tính 2S

Sau đó lấy 2S-S=S là xong.

2 tháng 7 2016

S=2+2^2+2^3+2^4+..........+2^2008

=> 2S= 2^2+2^3+2^4+..........+2^2008+2^2009

=> 2S-S = (2^2+2^3+2^4+..........+2^2008+2^2009)-(2+2^2+2^3+2^4+..........+2^2008)

=> S = 2^2009-2

5 tháng 10 2016

Ta có: \(2.S=2.\left(\frac{1}{1^4+1^2+1}+...+\frac{2011}{2011^4+2011^2+1}\right)\)

Xét hạng tử tống quát: \(\frac{2.n}{n^4+n^2+1}=\frac{2.n}{\left(n^4+2n^2+1\right)-n^2}=\frac{\left(n^2+n+1\right)-\left(n^2-n+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)\(=\frac{1}{n^2-n+1}-\frac{1}{n^2+n+1}\)

Từ đó: \(\frac{2.1}{1^4+1^2+1}=\frac{1}{1}-\frac{1}{3}\)

          \(\frac{2.2}{2^4+2^2+1}=\frac{1}{3}-\frac{1}{7}\)

          .....

          \(\frac{2.2011}{2011^4+2011^2+1}=\frac{1}{4042111}-\frac{1}{4046133}\)

Từ đó => 2.S= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+...+\frac{1}{4042111}-\frac{1}{4046133}\)=\(1-\frac{1}{4046133}\)=\(\frac{4046132}{4046133}\)

=> S\(=\frac{2023066}{4046133}\)

6 tháng 10 2016

Câu 1) Ta có\(a^3+2b^2-4b+3=0\Leftrightarrow a^3=-2.\left(b-1\right)^2-1\)\(\le-1\Rightarrow a^3\le-1\Rightarrow a\le-1\Rightarrow a^2\ge1\)

\(\Rightarrow\hept{\begin{cases}a^2\ge1\\a^2b^2\ge b^2\end{cases}}\)\(\Rightarrow a^2+a^2b^2-2b\ge1+b^2-2b\)\(\Leftrightarrow\left(b-1\right)^2\le0\)

Mà \(\left(b-1\right)^2\ge0\)với mọi b nên \(\left(b-1\right)^2=0\)\(\Rightarrow b=1\)

Thay b=1 vào 2 pt ban đầu được \(\hept{\begin{cases}a^3+2-4+3=0\\a^2+a^2-2=0\end{cases}}\)<=> a=1(tm)

Vậy (a,b)=(1;1)

Câu 2 bạn xem ở đây nhé http://olm.vn/hoi-dap/question/716469.html

12 tháng 4 2017

Bài 4:

Ta có:

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1\)

\(\Leftrightarrow\left(a^2-2b+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\)

Mà \(\hept{\begin{cases}\left(a-1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}}\) 

\(\Rightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)

Vậy \(\left(a,b,c\right)=\left(1;-2;\frac{1}{2}\right)\)

13 tháng 4 2017

bài này mình biết làm r nè, mấy bài khác cơ =))

20 tháng 8 2017

x2+y2+z2= xy+yz+zx.

=> 2x2+2y2+2z2-2xy-2yz-2zx=0

=> ( x-y)2+(y-z.)2+(z-x)=0

=> x=y=z=0

Thay x=y=z vào x2011+y2011+z2011=32012 ta được:

3.x2011=3.32011

=> x2011=32011

=> x=3 hoặc x = -3

Hay x=y=z=3 hoặc x=y=z=-3

20 tháng 8 2017

1) có bn giải rồi ko giải nữa

2) \(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(2011^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(2012^4+\frac{1}{4}\right)}\)

Với mọi n thuộc N ta có :

\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)

\(=\left[n\left(n-1\right)+\frac{1}{2}\right]\left[n\left(n+1\right)+\frac{1}{2}\right]\)

Áp dụng ta được :

\(A=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(2011.2012+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right).......\left(2012.2013+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{2012.2013+\frac{1}{2}}=\frac{1}{8100313}\)

\(S=\dfrac{11}{2^2}+\dfrac{11}{2^3}+\dfrac{11}{2^4}+...+\dfrac{11}{2^{2011}}\)

\(\Rightarrow2S=\dfrac{11}{2}+\dfrac{11}{2^2}+\dfrac{11}{2^3}+...+\dfrac{11}{2^{2010}}\)

\(\Rightarrow2S-S=\left(\dfrac{11}{2}+\dfrac{11}{2^2}+\dfrac{11}{2^3}+...+\dfrac{11}{2^{2010}}\right)\)

\(-\left(\dfrac{11}{2^2}+\dfrac{11}{2^3}+\dfrac{11}{2^4}+...+\dfrac{11}{2^{2011}}\right)\)

\(\Rightarrow S=\dfrac{11}{2}-\dfrac{11}{2^{2010}}=\dfrac{11.2^{2009}}{2^{2010}}-\dfrac{11}{2^{2010}}=\dfrac{11.\left(2^{2009}-1\right)}{2^{2010}}\)

6 tháng 8 2017

đáp án này k giống với sách của mình

20 tháng 7 2018

                                              Giải

 S = 1+2+2^2+2^3+...+2^62+2^63       (1)      

  Nhân hai vế với 2 ta có :   

2S = 2+2^2+^3+...+2^63+2^64            (2)

Trừ từng vế đắng thức (2) cho đẳng thức (1), ta có : S = 2^64-1         

21 tháng 8 2016

ta có 12 - 22 = - 3

       32 - 42 = - 7

      .................

    20052 - 20062 =    -4011

-{(4011+3)[(4011-3):4+1]:2} = -2013021