Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:2 = 1/6 + 1/12 + 1/20 +...+ 1/380
= 1/(2x3) + 1/(3x4) + 1/(4x5) + ... + 1/(19x20)
= 1/2 - 1/3+1/3 - 1/4 +....+ 1/19- 1/20
= 1/2 - 1/20 = 9/20
Suy ra A = 9/20 x 2 = 9/10
A:2 = 1/6 + 1/12 + 1/20 +...+ 1/380 = 1/(2x3) + 1/(3x4) + 1/(4x5) + ... + 1/(19x20) = 1/2 - 1/3+1/3 - 1/4 +....+ 1/19- 1/20 = 1/2 - 1/20 = 9/20 Suy ra A = 9/20 x 2 = 9/10
dạng chuỗi nha bạn
ko hiểu thì tích cho mình là mình giải cho
Đặt \(M=68+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{190}\)
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{190}\)
\(\Rightarrow A\times\frac{1}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{380}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{19\times20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
\(\Rightarrow M=68+\frac{19}{20}=\frac{1379}{20}\)
Vậy \(68+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{190}=\frac{1379}{20}\)
tổng các số trên là:
1/3+1/6+1/190=3/250
đáp số:3/250
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500 = (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500) S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500) = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250) = 1/251 + 1/252 + ...+ 1/500.
Vậy S = 1/251 + 1/252 + ...+ 1/500
S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500
= (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500)
S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500)
= (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250)
= 1/251 + 1/252 + ...+ 1/500.
Vậy S = 1/251 + 1/252 + ...+ 1/500
S=2(1/2+1/6+...+1/380)
=2(1-1/2+1/2-1/3+...+1/19-1/20)
=2*19/20=19/10