K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(F=-1-\dfrac{1}{3}-\dfrac{1}{6}-...-\dfrac{1}{1225}\)

\(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)

\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(=-2\left(1-\dfrac{1}{50}\right)=-2\cdot\dfrac{49}{50}=-\dfrac{49}{25}\)

D = -1-1/3-1/6-1/10-...-1/1225

Suy ra : D/2=-1/2-1/6-1/12-....-1/2450 
Mà 1/2=1/(1.2)=1-1/2; 1/6=1/(2.3)=1/2-1/3;...1/2450=1/(49.50)=... 
D/2= -(1-1/2)-(-1/2-1/3)-...-(1/49-1/50) 
D/2= -1+1/2-1/2+1/3-....-1/49+1/50 
D/2= -1+1/50=-49/50 
D=(-49/50).2=-98/50

k nha

\(=-\dfrac{2}{2}-\dfrac{2}{6}-\dfrac{2}{12}-...-\dfrac{2}{2450}\)

\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(=-2\cdot\dfrac{49}{50}=\dfrac{-49}{25}\)

10 tháng 7 2018

\(B=-1-\frac{1}{3}-\frac{1}{6}-...-\frac{1}{1225}\)

\(=-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)

\(=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=-2\left(1-\frac{1}{50}\right)=-2\cdot\frac{49}{50}=-\frac{49}{25}\)

10 tháng 7 2018

\(B=-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-\frac{1}{15}-...-\frac{1}{1225}\)

\(B=-2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\right)\)

\(B=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(B=-2\left(1-\frac{1}{50}\right)\)

\(B=-2\cdot\frac{49}{50}\)

\(B=-\frac{49}{25}\)

20 tháng 7 2017

\(-1-\frac{1}{3}-\frac{1}{6}-\frac{1}{10}-....-\frac{1}{1225}\)

\(=-2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{2450}\right)\)

\(=-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\right)\)

\(=-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=-2\left(1-\frac{1}{50}\right)=-2\cdot\frac{49}{50}=-\frac{49}{25}\)

20 tháng 6 2019

Đặt : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1225}\)

\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{2450}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{49.50}\)

\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{49}-\frac{1}{50}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(A=2.\frac{12}{25}\)

\(A=\frac{24}{25}\)

4 tháng 7 2017

\(-1-\dfrac{1}{3}-\dfrac{1}{6}-...-\dfrac{1}{1225}\)

\(=\dfrac{-1}{2}\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{2450}\right)\)

\(=\dfrac{-1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)

\(=\dfrac{-1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(=\dfrac{-1}{2}\left(1-\dfrac{1}{50}\right)\)

\(=\dfrac{-1}{2}.\dfrac{49}{50}=\dfrac{-49}{100}\)

Vậy...