Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-1-\dfrac{1}{3}-\dfrac{1}{6}-...-\dfrac{1}{1225}\)
\(=\dfrac{-1}{2}\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{2450}\right)\)
\(=\dfrac{-1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{50}\right)\)
\(=\dfrac{-1}{2}.\dfrac{49}{50}=\dfrac{-49}{100}\)
Vậy...
a) \(A=\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+...+\dfrac{5^2}{56.61}\)
\(A=5^2.\left(\dfrac{1}{11.16}+\dfrac{1}{16.21}+\dfrac{1}{21.26}+...+\dfrac{1}{56.61}\right)\)
\(A=\left(5^2:5\right).\left(\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+...+\dfrac{5}{56.61}\right)\)
\(A=5.\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+...+\dfrac{1}{56}-\dfrac{1}{61}\right)\)
\(A=5.\left(\dfrac{1}{11}-\dfrac{1}{61}\right)\)
\(A=5.\dfrac{50}{671}\)
\(Á=\dfrac{250}{671}\)
b: \(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)
\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=-2\cdot\dfrac{49}{50}=-\dfrac{49}{25}\)
A = -1-\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\)-\(\dfrac{1}{10}\)-\(\dfrac{1}{15}\)-...-\(\dfrac{1}{1225}\)
= -1-(\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+\(\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\))
Đặt B = \(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+\(\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\)
Ta có : B = 2(\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+...+\(\dfrac{1}{2450}\))
= 2(\(\dfrac{1}{2\text{×}3}\)+\(\dfrac{1}{3\text{×}4}\)+\(\dfrac{1}{4\text{×}5}\)+\(\dfrac{1}{5\text{×}6}\)+...+\(\dfrac{1}{49\text{×}50}\))
= 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\)
= 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{50}\))
= 2×\(\dfrac{24}{50}\)
= \(\dfrac{24}{25}\)
Thay B vào A ta có :
A = -1-\(\dfrac{24}{25}\)
=> A = \(\dfrac{-49}{25}\)
Cho mik một tick nhé thankss
\(B=-\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{1225}\right)\)
\(\dfrac{1}{2}B=-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{2450}\right)\)
\(\dfrac{1}{2}B=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{2.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}\right)\)
\(\dfrac{1}{2}B=-\left(1-\dfrac{1}{50}\right)\)
\(\dfrac{1}{2}B=-1+\dfrac{1}{50}\)
\(\dfrac{1}{2}B=\dfrac{-49}{50}\)
\(B=\dfrac{-49}{25}\)
\(B=-\dfrac{2}{2}-\dfrac{2}{6}-\dfrac{2}{12}-...-\dfrac{2}{2450}\)
\(=-2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{2450}\right)\)
\(=-2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
=-2*49/50
=-49/25
a: \(=\dfrac{2}{3}\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{1}{2003}=\dfrac{1}{180}+\dfrac{1}{2003}=\dfrac{2183}{180\cdot2003}\)
b: \(=\dfrac{5}{4}\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2006}=\dfrac{1}{64}+\dfrac{5}{2006}=\dfrac{1163}{64192}\)
c: \(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{3}\cdot\dfrac{9}{20}=\dfrac{3}{20}\)
\(a,A=\left(3\dfrac{5}{6}-1\dfrac{1}{3}\right)\left(3\dfrac{4}{15}-2\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left(3+\dfrac{5}{6}-1+\dfrac{1}{3}\right)\left(3+\dfrac{4}{15}-2+\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left[\left(3-1\right)+\left(\dfrac{5}{6}+\dfrac{1}{3}\right)\right]+\left[\left(3-2\right)+\left(\dfrac{4}{15}+\dfrac{3}{5}\right)\right]\)
\(\Leftrightarrow A=\left[2+\left(\dfrac{5}{6}+\dfrac{2}{6}\right)\right]+\left[1+\left(\dfrac{4}{15}+\dfrac{9}{15}\right)\right]\)
\(\Leftrightarrow A=\left(2+\dfrac{7}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=\left(2+1+\dfrac{1}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=3\dfrac{1}{6}+1\dfrac{13}{15}\)
Vậy...
\(b,B=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^{10}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(\Leftrightarrow B=\dfrac{6}{\left(2.3\right).5}\)
\(\Leftrightarrow B=\dfrac{6}{6.5}\)
\(\Leftrightarrow B=\dfrac{1}{5}\)
Vậy....
\(A=4,8.\left(3,1-1,5\right)+1,5.\left(4,8-3,1\right)\)
\(A=4,8.3,1-4,8.1,5+1,5.4,8-1,5.3,1\)
\(A=3,1.\left(4,8-1,5\right)-4,8\left(1,5+1,5\right)\)
\(A=3,1.3,3-4,8.3\)
\(A=10,23-14,4=-4,17\)
\(B=\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\dfrac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{2.3^9.2^{10}+3^{10}.\left(2^2\right)^{10}}=\dfrac{2^{19}.3^9+3^9.2^{18}.5}{2^{11}.3^9+3^{10}.2^{20}}=\dfrac{2^{18}.3^9\left(2+5\right)}{2^{11}.3^9\left(1+3.2^9\right)}=\dfrac{2^7.7}{1+3.2^9}\)