K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=2^2+4^2+...+200^2\)

\(=2^2\left(1^2+2^2+...+100^2\right)\)

\(=4\cdot\dfrac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}\)

\(=\dfrac{4}{6}\cdot100\cdot101\cdot201=1353400\)

1 tháng 11 2015

1/ 106=(5x2)6=56x26=56x64=>106-57=56x(64-5)=56x59. Vậy ta có điều phải chứng minh

30 tháng 7 2018

\(S=4^2+8^2+...+40^2\)

\(S=2^2\left(2^2+4^2+...+20^2\right)\)

\(S=2.1540\)

\(=3080\)

13 tháng 1 2016

 

12+22+32+...+102=385

⇔385.22=22(12+22+32+....+102)

S=22+42+62+...+202

=385.4

=1540 

Vậy S=1540

13 tháng 1 2016

S = 22 + 42 + 62 +...+ 202

S = 22(12 + 22 + 32 +...+ 102)

S = 22(1 + 4 + 9 +...+ 100) (Thừa số thứ hai là tổng của các số chính phương không quá 100)

S = 22.385

S = 4.385

S = 1540

Nếu muốn bạn có thể làm theo cách này hoặc là cách khác đầy đủ hơn nhưng dài hơn. Nếu không thích cách này cứ bảo mình

S= (2.1)^2 + (2.2)^2 +(2.3)^2 + .... + (2.10)^2

S= 2^2 (1^2 + 2^2 + 3^2+....+10^2)

S = 4. 385=1540

b) (8/2)^n = 4

4^n =4^1

Vậy n =1

7 tháng 2 2020

\(S=2^2+4^2+....+20^2=\left(2.1\right)^2+\left(2.2\right)^2+...+\left(2.10\right)^2\)

\(=2^2.1^2+2^2.2^2+...+2^2.10^2=2^2\left(1^2+2^2+...+10^2\right)=4.385=1540\)

\(8^n\div2^n=4\Leftrightarrow4^n=4\Leftrightarrow n=1\)

16 tháng 9 2015

Bạn thiếu dữ liệu là biết \(1^2+2^2+3^2+...+10^2=\) ?

17 tháng 9 2015

S = 22 (12 + 22 + 32 + .. + 102)

Đặt T = 12 + 22 + 32 + .. + 102 , ta tính T như sau:

ta có nhận xét:

(n+1)2 - n3 = [(n + 1) - n][(n + 1)2 + n(n + 1) + n2) = 1. [3n2 + 3n + 1]

Hay là:

(n+1)2 - n3 = 3n2 + 3n + 1

Thay lần lượt n = 1, 2 , 3 , .., 10 vào ta có:

23 - 13 = 3. 12 + 3 . 1 + 1

33 - 23 = 3. 22 + 3 . 2 + 1

43 - 33 = 3. 32 + 3 . 3 + 1

...

113 - 103 = 3. 102 + 3 . 10 + 1

--------------------------

Cộng các vế với nhau ta có:

113 - 13 = 3 (12 + 22 + 32 + .. + 102) + 3 (1 + 2 + 3 + ... + 10) + (1 + 1 + 1 + ... + 1)

Chú ý rằng 1 + 2 + ... + n = n(n+1)/2

Vậy ta có:

113 - 13 = 3 . T + 3 10.(10 + 1)/2 + 10

=> 1331 - 1 = 3 T + 165 + 10

=> T = 385

=> S = 22 . T = 4 . 385 = 1540

18 tháng 7 2016

S = 22 + 42 + 62 + ... + 202

S = 22.(12 + 22 + 32 + ... + 102)

S = 4.385

S = 1540

18 tháng 7 2016

S=22+42+62+.....+202

=22 .( 1+22 +....+102 )

=S= 4.385

S=1540

29 tháng 6 2017

vào trang này nhé     doc.edu.vn/tai-lieu/chuyen-de-toan-6-day-so-phuc-tap-15129/

20 tháng 9 2019

\(a,\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[2^4-4^2\right]\)

\(=\left[2^{17}+16^2\right]\cdot\left[9^{15}-3^{15}\right]\cdot\left[16-16\right]\)

\(=\left[2^{17}+16^2\right]\left[9^{15}-3^{15}\right]\cdot0=0\)

\(b,\left[8^{2017}-8^{2015}\right]\cdot\left[8^{2014}\cdot8\right]\)

\(=8^{2015}\left[8^2-1\right]\cdot8^{2015}\)

\(=8^{2015}\cdot63\cdot8^{2015}=8^{4030}\cdot63\)sửa lại câu b , có vấn đề rồi

\(c,\frac{2^8+8^3}{2^5\cdot2^3}=\frac{2^8+\left[2^3\right]^3}{2^5\cdot2^3}=\frac{2^8+2^9}{2^8}=\frac{2^8\left[1+2\right]}{2^8}=3\)

2.a, \(2^6=\left[2^3\right]^2=8^2\)

Mà 8 = 8 nên 82 = 82 hay 26 = 82

b, \(5^3=5\cdot5\cdot5=125\)

\(3^5=3\cdot3\cdot3\cdot3\cdot3=243\)

Mà 125 < 243 nên 53 < 35

c, 26 = [23 ]2 = 82

Mà 8 > 6 nên 82 > 62 hay 26 > 62

d, 7200 = [72 ]100 = 49100

6300 = \(\left[6^3\right]^{100}\)= 216100

Mà 49 < 216 nên 49100 < 216100 hay 7200 < 6300