K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2024

A = \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + ... + \(\dfrac{2}{9.11}\)

A = \(\dfrac{1}{1}-\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{9}\) - \(\dfrac{1}{11}\)

A =   \(\dfrac{1}{1}\) - \(\dfrac{1}{11}\) 

A = \(\dfrac{10}{11}\)

23 tháng 12 2024

Để giải phép tính A=21⋅3+23⋅5+25⋅7+⋯+29⋅11A = \frac{2}{1 \cdot 3} + \frac{2}{3 \cdot 5} + \frac{2}{5 \cdot 7} + \cdots + \frac{2}{9 \cdot 11} dưới dạng siêu phức tạp, ta sẽ thực hiện các bước trung gian phức tạp và giải thích chi tiết từng phần của phép toán.

Bước 1: Phân tích cấu trúc tổng quát

Ta có tổng sau:

A=21⋅3+23⋅5+25⋅7+⋯+29⋅11A = \frac{2}{1 \cdot 3} + \frac{2}{3 \cdot 5} + \frac{2}{5 \cdot 7} + \cdots + \frac{2}{9 \cdot 11}

Mỗi phần tử trong tổng là một phân số có mẫu số là tích của hai số lẻ liên tiếp. Tổng quát, ta có thể viết mỗi phần tử theo dạng:

2(2n−1)(2n+1)vớin=1,2,3,…,5.\frac{2}{(2n-1)(2n+1)} \quad \text{với} \quad n = 1, 2, 3, \dots, 5.

Vậy tổng có thể viết lại là:

A=∑n=152(2n−1)(2n+1)A = \sum_{n=1}^{5} \frac{2}{(2n-1)(2n+1)}

Bước 2: Đơn giản hóa mỗi phân số

Ta sẽ đơn giản hóa từng phân số trong tổng. Dễ dàng nhận thấy rằng mỗi phân số có thể rút gọn bằng cách sử dụng phép phân tích thành phần phân số (phương pháp phân tích phân số thành phần nhỏ hơn).

2(2n−1)(2n+1)=A2n−1+B2n+1\frac{2}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1}

Với mục đích tìm AABB, ta giải phương trình sau:

2(2n−1)(2n+1)=A2n−1+B2n+1\frac{2}{(2n-1)(2n+1)} = \frac{A}{2n-1} + \frac{B}{2n+1}

Nhân cả hai vế với (2n−1)(2n+1)(2n-1)(2n+1):

2=A(2n+1)+B(2n−1)2 = A(2n+1) + B(2n-1)

Mở rộng các biểu thức:

2=A(2n)+A+B(2n)−B2 = A(2n) + A + B(2n) - B

Nhóm các hạng tử theo nn:

2=(2n)(A+B)+(A−B)2 = (2n)(A + B) + (A - B)

Vì phương trình này phải đúng với mọi giá trị của nn, ta có hệ phương trình:

A+B=0A + B = 0 A−B=2A - B = 2

Giải hệ này:

A=1vaˋB=−1A = 1 \quad \text{và} \quad B = -1

Vậy ta có:

2(2n−1)(2n+1)=12n−1−12n+1\frac{2}{(2n-1)(2n+1)} = \frac{1}{2n-1} - \frac{1}{2n+1}

Bước 3: Thay vào tổng

Ta thay vào biểu thức tổng ban đầu:

A=∑n=15(12n−1−12n+1)A = \sum_{n=1}^{5} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right)

Viết cụ thể từng phần tử:

A=(11−13)+(13−15)+(15−17)+(17−19)+(19−111)A = \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{7} \right) + \left( \frac{1}{7} - \frac{1}{9} \right) + \left( \frac{1}{9} - \frac{1}{11} \right)

Bước 4: Tính toán các hạng tử

Quan sát rằng tổng này là một chuỗi lũy tiến mà trong đó các hạng tử sẽ hủy bỏ lẫn nhau. Cụ thể:

A=1−111A = 1 - \frac{1}{11}

Vậy:

A=1111−111=1011A = \frac{11}{11} - \frac{1}{11} = \frac{10}{11}

Bước 5: Kết quả

Do đó, kết quả của phép tính AA là:

A=1011A = \frac{10}{11}

 
10 tháng 5 2022

\(S=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)

\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)

\(=\dfrac{1}{1}-\dfrac{1}{11}=\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)

7 tháng 8 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}\)

\(=\frac{1}{1}-\frac{1}{11}\)

\(=\frac{10}{11}\)

7 tháng 8 2016

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

\(=1-\frac{1}{11}\)

\(=\frac{10}{11}\)

7 tháng 5 2015

\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2013.2015}=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=2.\left(\frac{2015}{2015}-\frac{1}{2015}\right)\)

\(=2.\frac{2014}{2015}\)

\(=\frac{4028}{2015}\)

21 tháng 5 2015

=2.(2\1.3+2\3.5+...+2\9.11)

=2.(1-1\11)

làm tắt bạn tự hiểu nhé

 

30 tháng 4 2016

\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{10^2}{9.11}=\frac{\left(1.2.3.....10\right)^2}{\left(1.2.3.....9\right).\left(3.4.5....9.10.11\right)}=\frac{\left(1.2.3....10\right)^2}{\left(1.2\right)\left(3.4.5.....9\right)^2\left(10.11\right)}=\frac{\left(1.2.10\right)^2}{\left(1.2\right).\left(10.11\right)}=\frac{1.2.10}{11}=\frac{20}{11}\)

26 tháng 7 2016

\(\text{Ta có:}\) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}\)

\(\Leftrightarrow2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}.2\)

\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).x=\frac{4}{3}\)

\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right).x=\frac{4}{3}\)

\(\Leftrightarrow\left(1-\frac{1}{11}\right)x=\frac{4}{3}\)

\(\Leftrightarrow\frac{10}{11}x=\frac{4}{3}\)

\(\Leftrightarrow x=\frac{4}{3}:\frac{10}{11}=\frac{22}{15}\)

Bài 1:

Ta có:

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

b, Đặt  \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)

Bài 2:

Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)

\(\Rightarrow\left(2n+1;3n+2\right)=1\)

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản

11 tháng 2 2018

1.          Giải 

a,  \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

b,   \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)

2.    Giải 

Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*) 

=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)

=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d

=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)

=> (6n + 4) - (6n + 3) \(⋮\)

=> 1 \(⋮\)

=> d = 1 

Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản 

14 tháng 4 2016

a.2/1.3+2/3.5+2/5.7+................+2/99.101

1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101

1-1/101

100/101

b.5/1.3+5/3.5+5/5.7+............+5/99.101

5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2

5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)

5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)

5/2(1-1/101)

5/2.100/101

250/101

30 tháng 9 2015

Mau trả điểm cho nick phụ của tui,trả điểm đây mau lên