Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=2+2^2+...+2^64
2A-A=(2+2^2+...+2^64)-(1+2+2^2+...+2^63)
=>A=2^64-1
A=21+22+23+...+261+262+263
A=(21+22+23)+...+(261+262+263)
A=14+...+261.(21+22+23)
A=14+...+261.14 chia hết cho 14
tick ủng hộ mình nha
S = 1+2+22+23+...+262+263
2S = 2+22+23+24+....+263+264
2S - S = 264 - 1
=> S = 264 - 1
Giải
S = 1+2+2^2+2^3+...+2^62+2^63 (1)
Nhân hai vế với 2 ta có :
2S = 2+2^2+^3+...+2^63+2^64 (2)
Trừ từng vế đắng thức (2) cho đẳng thức (1), ta có : S = 2^64-1
cái này rút gọn thôi
2xS=2^1+2^2+...+2^64
2S-S=2^64-1
S=2^64-1
nhớ bấm đúng nhé
a, S=1+2+22+23+................+263
\(\Rightarrow\)2S=2+22+23+24+.................+264
\(\Rightarrow\)2S-S=(2+22+23+.................+264) - (1+2+22+...............+263)
\(\Rightarrow\)S=264-1
b,S=1+3+32+.................+320
\(\Rightarrow\)3S=3+32+33+...............+321
\(\Rightarrow\)3S-S=(3+32+33+................+321) - (1+3+32+.................+320)
\(\Rightarrow\)2S=321-1
\(\Rightarrow\)S=\(\frac{3^{21}-1}{2}\)
c,Tương tự:4S=4+42+43+...............+450
\(\Rightarrow\)4S-S=450-1
\(\Rightarrow S=\frac{4^{50}-1}{3}\)
S=1+2^2+2^3+.........+2^63
S=2^0+2^1+2^2+.....+2^63
2S=2x(20+21+22+...+263)
2S=21+22+23+24+......+264
2S-S=(21+22+23+24+..........+264)\(-\)(20+21+22+....+263)
1S=264\(-\)20
S=264\(-\)1
Các câu khác tương tự
câu b nhân S với 3
Câu c nhân S với 4
Cơ số bao nhiêu thì nhân với bấy nhiêu
2S = 2 + 2^2 + 2^3 + ...+ 2^64
2S + 1 = 1 + 2 + 2^2 + ... + 2^64
2S - S = 2^64 - 1
Vậy S = 2^64 - 1
k mk
S = 1 + 2 + 22 + 23 + ......... + 262 + 263
2S = 2 + 22 + 23 + ............ + 264
2S + 1 = 1 + 2 + 22 + .......... + 264
2S - S = 264 - 1
\(\Rightarrow\)S = 264 - 1
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
Đặt \(B=2^2+2^3+...+2^{62}+2^{63}\)
=>\(2B=2^3+2^4+...+2^{63}+2^{64}\)
=>\(2B-B=2^3+2^4+...+2^{63}+2^{64}-2^2-2^3-...-2^{62}-2^{63}\)
=>\(B=2^{64}-4\)
\(A=1+2^2+2^3+...+2^{63}\)
=>\(A=1+B=1+2^{64}-4=2^{64}-3\)