Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-2+3-4+....+99-100
=(1-2)+(3+4)+....+(99-100)
=(-1)+(-1)+...+(-1)
số hạng của dãy trên là (100+1-1) / 2 = 50 số hạng
=(-1) x 50
=-50
A=1-2+3-4+5-6+....+99-100
A=(1-2)+(3-4)+(5-6)+...+(99-100)
A=-1+(-1)+(-1)+...+(-1) (50 số hạng)
A=-1*50
A=-50
dễ thôi bài giải như này nha 1-2+3-4....+99-100=<-1><-1>....<-1>=-1.50=-50
\(1+2-3+4-5+....+200-201+202-203+600\)
\(=1+\left(2-3\right)+\left(4-5\right)+....+\left(200-201\right)+\left(202-203\right)+600\)
\(=1+\left(-1\right)+\left(-1\right)+....+\left(-1\right)+\left(-1\right)+600\) ( có 101 số -1 )
\(=1+\left(-1\right).101+600=\left(-1\right).100+600=-100+600=500\)
The girl
Có 50 cặp như thế , do đó kết quả là : 101 . 50 = 5050
Một cách khác tính tổng trên
S = 1 + 2 + 3 + ......... + 99 + 100
S = 100 + 99 + .......... + 3 + 2 + 1
2S = 101 + 101 + ..... + 101 + 101 ( có 100 số hạng )
Do đó S = 101 . 100 : 2 = 5050
Như vậy để tính tổng các số tự nhiên liên tiếp , chỉ cần lấy số đầu cộng với số cuối , nhân với số số hạng rồi chia cho 2
Quy tắc trên cũng đúng đối với các dãy số cách đều , chẳng hạn : tổng các số chẵn liên tiếp tổng các số lẻ liên tiếp .......
Số số hạng của dãy số này là :
( 100 - 1 ) : 1 + 1 = 100 ( số )
Tổng của dãy số này là :
( 100 + 1 ) x 100 : 2 = 5050
Đáp số : 5050
Học tốt !
=1-1/3+1/3-1/5+1/5-1/7+1/7+....+1/99-1/101
=1-1/101
=100/101
S₁ = 1 - 2 + 3 - 4 + ... + 99 - 100
Số số hạng:
100 - 1 + 1 = 100 (số)
⇒ S₁ = (1 - 2) + (3 - 4) + ... + (99 - 100)
= -1 + (-1) + ... + (-1) (50 số -1)
= -50
mình chỉ biết phần a chứ còn mình chịu phần b
phần a làm thế này nè
dãy số trên có số số hạng là
[ 2001- 5 ] chia 4 + 1 = 5 00 [ số hạng ]
tổng dãy số trên là
[5+2001] nhân 500 chia 2 bằng bao nhiêu thì bạn tự tính nhé
sau đó bạn đáp số là xong
Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)
=> 3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
=> 3A = 99.100.101
=> A = \(\frac{99.100.101}{3}\)
=> A = 333300
\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .
Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)
Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)
\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)
Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right)^2\)
Vì n thuộc N nên tổng của A là : một số chính phương .
\(c)\) Ta có : Số hạng của dãy số B là : n
Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)
\(=n.\left(n+1\right)\)
Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 .
Ta thấy chúng đều không thoả mãn .
vậy.............
3A - A = 3.(3 + 3^2 +...+3^99) - 3 - 3^2 -...- 3^99
2A = 3^2+ 3^3 +...+3^99 + 3^100 - 3 - 3^2 -...- 3^99
2A = 3^100 - 3
=> A = (3^100 - 3) : 2