K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha

1, 7A = 7+7^2+7^3+....+7^2008

6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1

=> A = (7^2008-1)/6

Tk mk nha

\(A=1+7+7^2+7^3+...+7^{2007}\)

\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)

\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)

\(\Rightarrow6A=7^{2008}-1\)

\(\Rightarrow A=\frac{7^{2008}-1}{6}\)

24 tháng 2 2018

a)\(1-2+3-4+5-6+7-8+8-9+9-10\)

=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)

\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(=\left(-1\right).6\)

\(=-6\)

b)\(1-2+3-4+...+99-100\)

\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)

\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)

\(=\left(-1\right).50\)

\(=-50\)

c)\(1-3+5-7+9-11+13-15\)

\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)

\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)

\(=\left(-2\right).4\)

\(=-8\)

d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi

\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)

\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)

\(=\left(-2\right).25\)

\(=-50\)

e)\(-1-2-3-4-...-99-100\)

\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)

\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))

\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)

\(=\left(-100\right).50\)

\(=-5000\)

24 tháng 2 2018

a, -5

b, -50

c, -8

d, -50

e, -5050

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

8 nha bạn 

ht

24 tháng 11 2016

a) A=-1-2-3-..-99

=-(1+2+3+..+99)

Xét: 1+2+3+...+99

SSH:(99-1):1+1=99

Tổng:(99+1).99:2=4950 Vậy A =-4950

b)B=1-2+3-4+5-6+...+99-100

B=(1-2)+(3-4)+(5-6)+...+(99-100)

Dãy số (1-2),(3-4),...,(99-100) có 50 số hạng

nên B=-1.50=-50

c)C=-1+5-9+13+...-81+85

C=(-1+5)+(-9+13)+...+(-81+85)

Dãy số (-1+5),(-9+13),...,(-81+85) có 21 số hạng

nên C=21.4=84

24 tháng 11 2016

Bạn titanic oi, câu c) banj xem lại giups mik nhé, mik thấy nó hơi sai, nhưng mik k chắc nên co j ban bo qua nha! Cam on ban da giup mik.