Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác đều ABC có diện tích \(S = \frac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)
Tam giác đều A'B'C' có diện tích \(S' = \frac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối chóp cụt
\(V = \frac{1}{3}.HH'.\left( {S + S' + \sqrt {S.S'} } \right) = \frac{1}{3}.h.\left( {{a^2}\sqrt 3 + \frac{{{a^2}\sqrt 3 }}{4} + \sqrt {{a^2}\sqrt 3 .\frac{{{a^2}\sqrt 3 }}{4}} } \right) = \frac{{7{a^2}\sqrt 3 }}{{12}}\)
b) Vì ABC.A'B'C' là khối chóp cụt đều nên (ABC) // (A'B'C')
Mà \(\left( {A{B_1}{C_1}} \right) \subset \left( {ABC} \right) \Rightarrow \left( {A{B_1}{C_1}} \right)//\left( {A'B'C'} \right)\)
Xét tam giác ABC có
B1,C1 tương ứng là trung điểm của AB, AC
\( \Rightarrow \) B1C1 là đường trung bình của tam giác ABC
\( \Rightarrow \) \({B_1}{C_1} = \frac{{BC}}{2}\) và B1C1 // BC mà \(B'C' = \frac{{BC}}{2}\) và BC // B’C’
\( \Rightarrow \) B1C1 = B’C’ và B1C1 // B’C’ \( \Rightarrow \) C1C’B’B1 là hình bình hành
Ta có \(A{B_1} = A'B' = \frac{{AB}}{2},A{B_1}//A'B'\) \( \Rightarrow \) AA’B’B1 là hình bình hành.
\(A{C_1} = A'C' = \frac{{AC}}{2},A{C_1}//A'C'\) \( \Rightarrow \) AA’C’C1 là hình bình hành.
Do đó AB1C1.A'B'C' là một hình lăng trụ
Thể tích hình lăng trụ \(V = HH'.S' = h.\frac{{{a^2}\sqrt 3 }}{4}\)
Diện tích đáy lớn là: \(S = A{B^2} = {3^2} = 9\)
Diện tích đáy bé là: \(S' = {2^2} = 4\)
Thể tích hình chóp cụt là:
\(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right) = \frac{1}{3}.4\left( {9 + \sqrt {9.4} + 4} \right) = \frac{{76}}{3} \approx 25,3\left( {d{m^3}} \right)\)
Diện tích đáy lớn là:
\(S_1=60^2=3600\left(cm^2\right)\)
Diện tích đáy nhỏ là;
\(S_2=30^2=900\left(cm^2\right)\)
Chiều cao là:
\(\sqrt{50^2-\dfrac{30^2}{2}}=5\sqrt{82}\left(cm\right)\)
Thể tích là;
\(V=\dfrac{1}{3}\cdot h\cdot\left(S_1+S_2+\sqrt{S_1\cdot S_2}\right)\)
\(=\dfrac{1}{3}\cdot5\sqrt{82}\left(900+3600+\sqrt{900\cdot3600}\right)\)
\(\simeq95082\left(cm^3\right)\)
Chọn B.
Lời giải.
Xét hình chóp tứ giác đều S.ABCD, đặt AB =x, SO =h. Với O là tâm của hình vuông ABCD ⇒ S O ⊥ ( A B C D ) . Qua O kẻ đường thẳng OH vuông góc với SA với H ∈ SA
Ta có
Suy ra OH là đoạn vuông góc chung của SA và BD
Theo bài ra, ta có
Tam giác SAO vuông tại O, có đường cao OH suy ra
Mô hình hoá hình ảnh cái bục bằng hình chóp cụt lục giác đều \(ABC{\rm{DEF}}{\rm{.}}A'B'C'{\rm{D'E'F'}}\) có \(O\) và \(O'\) là tâm của hai đáy. Kẻ \(C'H \bot BC\left( {H \in BC} \right)\).
Ta có: \(BC = 1;CC' = B'C' = 0,7\).
Diện tích đáy lớn là: \(6.\frac{{B{C^2}\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{2}\)
Diện tích đáy nhỏ là: \(6.\frac{{B'C{'^2}\sqrt 3 }}{4} = \frac{{147\sqrt 3 }}{{200}}\)
\(BCC'B'\) là hình thang cân nên \(HC = \frac{{BC - B'C'}}{2} = 0,15\)
Tam giác \(CC'H\) vuông tại \(H \Rightarrow C'H = \sqrt {CC{'^2} - C{H^2}} = \frac{{\sqrt {187} }}{{20}}\)
Diện tích một mặt bên là: \(\frac{1}{2}\left( {BC + B'C'} \right).C'H = \frac{{17\sqrt {187} }}{{400}}\)
Diện tích sáu mặt bên là: \(6.\frac{{17\sqrt {187} }}{{400}} = \frac{{51\sqrt {187} }}{{200}}\)
Diện tích cần sơn là: \(\frac{{51\sqrt {187} }}{{200}} + \frac{{3\sqrt 3 }}{2} + \frac{{147\sqrt 3 }}{{200}} \approx 7,36\left( {{m^2}} \right)\)
Diện tích đáy lớn là: \(S = {5^2} = 25\left( {{m^2}} \right)\)
Diện tích đáy bé là: \(S' = {2^2} = 4\left( {{m^2}} \right)\)
Thể tích của bồn chứa là: \(V = \frac{1}{3}.3\left( {25 + \sqrt {25.4} + 4} \right) = 39\left( {{m^3}} \right)\)