K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Mô hình hoá hình ảnh cái bục bằng hình chóp cụt lục giác đều \(ABC{\rm{DEF}}{\rm{.}}A'B'C'{\rm{D'E'F'}}\) có \(O\) và \(O'\) là tâm của hai đáy. Kẻ \(C'H \bot BC\left( {H \in BC} \right)\).

Ta có: \(BC = 1;CC' = B'C' = 0,7\).

Diện tích đáy lớn là: \(6.\frac{{B{C^2}\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{2}\)

Diện tích đáy nhỏ là: \(6.\frac{{B'C{'^2}\sqrt 3 }}{4} = \frac{{147\sqrt 3 }}{{200}}\)

\(BCC'B'\) là hình thang cân nên \(HC = \frac{{BC - B'C'}}{2} = 0,15\)

Tam giác \(CC'H\) vuông tại \(H \Rightarrow C'H = \sqrt {CC{'^2} - C{H^2}}  = \frac{{\sqrt {187} }}{{20}}\)

Diện tích một mặt bên là: \(\frac{1}{2}\left( {BC + B'C'} \right).C'H = \frac{{17\sqrt {187} }}{{400}}\)

Diện tích sáu mặt bên là: \(6.\frac{{17\sqrt {187} }}{{400}} = \frac{{51\sqrt {187} }}{{200}}\)

Diện tích cần sơn là: \(\frac{{51\sqrt {187} }}{{200}} + \frac{{3\sqrt 3 }}{2} + \frac{{147\sqrt 3 }}{{200}} \approx 7,36\left( {{m^2}} \right)\)

22 tháng 9 2023

tham khảo:

Bài tập 5 trang 85 Toán 11 tập 2 Chân trời

Mô hình hoá cái hầm bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 14,A'B' = 10\).

Gọi \(M,M'\) lần lượt là trung điểm của \(CD,C'D'\).

\(A'B'C'{\rm{D}}'\) là hình vuông \( \Rightarrow O'M' \bot C'{\rm{D}}'\)

\(CDD'C'\) là hình thang cân \( \Rightarrow MM' \bot C'D'\)

Vậy \(\widehat {MM'O'}\) là góc nhị diện giữa mặt bên và đáy nhỏ.

\( \Rightarrow \widehat {MM'O'} = {135^ \circ } \Rightarrow \widehat {M'MO} = {180^ \circ } - \widehat {MM'O'} = {45^ \circ }\)

Kẻ \(M'H \bot OM\left( {H \in OM} \right)\)

\(OMM'O'\) là hình chữ nhật

\( \Rightarrow OH = O'M' = 5,MH = OM - OH = 2,M'H = OO' = MH.\tan {45^ \circ } = 2\)

Diện tích đáy lớn là: \(S = A{B^2} = {14^2} = 196\left( {{m^2}} \right)\)

Diện tích đáy bé là: \(S' = A'B{'^2} = {10^2} = 100\left( {{m^2}} \right)\)

Số mét khối đất cần phải di chuyển ra khỏi hầm là:

\(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right) = \frac{1}{3}.2\left( {196 + \sqrt {196.100}  + 100} \right) = \frac{{872}}{3} \approx 290,67\left( {{m^3}} \right)\)

21 tháng 8 2023

tham khảo

loading...

Mô hình hoá chân cột bằng gang bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy.Vậy \(AB=2a,A'B'=a,OO'=2a\)

a)Gọi \(M,M'\) lần lượt là trung điểm của \(CD,C'D'.\)

\(A'B'C'D'\) là hình vuông \(\Rightarrow O'M\perp C'D\)

\(CDD'C\) là hình thang cân \(\Rightarrow MM'\perp C'D'\)

Vậy \(\widehat{MM'O}\) là góc phẳng nhị diện giữa mặt bên và đáy nhỏ,\(\widehat{M'MO}\) là góc phẳng nhị diện giữa mặt bên và đáy lớn.

Kẻ \(M'H\perp OM\left(H\in OM\right)\)

\(OMM'O'\) là hình chữ nhật

\(\Rightarrow OH=O'M'=\dfrac{a}{2},OM=a,MH=OM-OH=\dfrac{a}{2}\tan\widehat{M'MO}=\dfrac{M'H}{MH}=4\)

\(\Rightarrow\widehat{M'MO}=75,96^o\Rightarrow\widehat{MM'O'}=180^o-\widehat{M'MO}\\ =104,04^o\)

b)Diện tích đáy lớn là:\(S=AB^2=4a^{^2}\)

Diện tích đáy bé là:\(S'=A'B'^2=a^2\)

Thể tích hình chóp cụt là:

\(V_1=\dfrac{1}{3}h\left(S+\sqrt{SS'}+S'\right)\\ =\dfrac{1}{3}.2a\left(4a^2+\sqrt{4a^2.a^2}+a^2\right)=\dfrac{14a^3}{3}\)

Thể tích hình trụ rỗng là:\(V_2=\pi R^2h=\pi\left(\dfrac{a}{2}\right)^2.2a=\dfrac{\pi a^3}{2}\)

Thể tích chân cột là:\(V=V_1-V_2=\left(\dfrac{14}{3}-\dfrac{\pi}{2}\right)a^3\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Gọi \(O\) và \(O'\) lần lượt là tâm của hai đáy.

Kẻ \(B'H \bot B{\rm{D}}\left( {H \in B{\rm{D}}} \right),B'K \bot BC\left( {K \in BC} \right)\)

\(\begin{array}{l}B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}}  = 2a\sqrt 2  \Rightarrow BO = \frac{1}{2}B{\rm{D}} = a\sqrt 2 \\B'D' = \sqrt {A'B{'^2} + A'{\rm{D}}{{\rm{'}}^2}}  = a\sqrt 2  \Rightarrow B'O' = \frac{1}{2}B'{\rm{D'}} = \frac{{a\sqrt 2 }}{2}\end{array}\)

\(OO'B'H\) là hình chữ nhật \( \Rightarrow OH = B'O' = \frac{{a\sqrt 2 }}{2},B'H = OO' = a\)

\( \Rightarrow BH = BO - OH = \frac{{a\sqrt 2 }}{2}\)

Tam giác \(BB'H\) vuông tại \(H\) có: \(BB' = \sqrt {B'{H^2} + B{H^2}}  = \frac{{a\sqrt 6 }}{2}\)

\(BCC'B'\) là hình thang cân \( \Rightarrow BK = \frac{{BC - B'C'}}{2} = \frac{a}{2}\)

Tam giác \(BB'K\) vuông tại \(K\) có: \(B'K = \sqrt {BB{'^2} - B{K^2}}  = \frac{{a\sqrt 5 }}{2}\)

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Diện tích một mặt bên của lồng đèn là: \(10.30 = 300\left( {c{m^2}} \right)\)

Tổng diện tích các mặt bên của chiếc lồng đèn đó là: \(300.6 = 1800\left( {c{m^2}} \right)\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

 

Gọi \(O,O'\) lần lượt là tâm của hai đáy \(ABC\) và \(A'B'C'\), \(M,M'\) lần lượt là trung điểm của \(BC\) và \(B'C'\).

Kẻ \(A'H \bot AO\left( {H \in AO} \right) \Rightarrow A'H = OO'\)

\(\Delta ABC\) đều \( \Rightarrow AM = \frac{{a\sqrt 3 }}{2} \Rightarrow AO = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}\)

\(\Delta A'B'C'\) đều \( \Rightarrow A'M' = \frac{{\frac{a}{2}.\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4} \Rightarrow A'O' = \frac{2}{3}A'M' = \frac{{a\sqrt 3 }}{6}\)

\(A'HOO'\) là hình chữ nhật \( \Rightarrow OH = A'O' = \frac{{a\sqrt 3 }}{6}\)

\( \Rightarrow AH = AO - OH = \frac{{a\sqrt 3 }}{6}\)

Tam giác \(AA'H\) vuông tại \(H\)

\( \Rightarrow OO' = A'H = \sqrt {AA{'^2} - A{H^2}}  = \frac{{a\sqrt {141} }}{6}\)

2 tháng 12 2018

1 tháng 6 2018

Chọn C.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

+) Giả sử gọi hình chóp tứ giác đều có tất cả các cạnh đều bằng a là S.ABCD có đường cao SH. Trong đó, H là tâm của hình vuông ABCD.

+) Ta có: (SCD) ∩ (ABCD) = CD. Gọi M là trung điểm CD.

- Tam giác SCD có SC = SD = a nên tam giác cân tại S, có SM là đường trung tuyến nên đồng thời là đường cao: SM ⊥ CD.

- Tam giác HCD cân tại H (HC = HD = AC/2 = BD/2)

   có HM là đường trung tuyến nên đồng thời là đường cao: HM ⊥ CD.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

+) Ta có : SC = SD = CD = a nên tam giác SCD là tam giác đều cạnh a có SM là đường trung tuyến:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Trong tam giác vuông SHM vuông tại H có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

22 tháng 5 2019

Đáp án A

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Mô hình hoá chân tháp bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 5,A'B' = 2,CC' = 3\).

\(ABCD\) là hình vuông

\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = 5\sqrt 2  \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\)

\(A'B'C'D'\) là hình vuông \( \Rightarrow A'C' = \sqrt {A'B{'^2} + B'C{'^2}}  = 2\sqrt 2  \Rightarrow C'O' = \frac{1}{2}A'C' = \sqrt 2 \)

Kẻ \(C'H \bot OC\left( {H \in OC} \right)\)

\(OHC'O'\) là hình chữ nhật \( \Rightarrow OH = O'C' = \sqrt 2 ,OO' = C'H \Rightarrow CH = OC - OH = \frac{{3\sqrt 2 }}{2}\)

\(\Delta CC'H\) vuông tại \(H \Rightarrow C'H = \sqrt {CC{'^2} - C{H^2}}  = \frac{{3\sqrt 2 }}{2} \Rightarrow OO' = C'H = \frac{{3\sqrt 2 }}{2}\)

Diện tích đáy lớn là: \(S = A{B^2} = {5^2} = 25\left( {{m^2}} \right)\)

Diện tích đáy bé là: \(S' = A'B{'^2} = {2^2} = 4\left( {{m^2}} \right)\)

Thể tích hình chóp cụt là:

\(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right) = \frac{1}{3}.\frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25.4}  + 4} \right) = \frac{{39\sqrt 2 }}{2}\left( {{m^3}} \right)\)

Số tiền để mua bê tông tươi làm chân tháp là: \(\frac{{39\sqrt 2 }}{2}.1470000 \approx 40538432\) (đồng).