K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình 1:

S đáy=5*7=35cm2

V=1/3*S đáy*h=1/3*35*3=35cm3

Hình 2:

S đáy=12*18=216cm2

V=1/3*216*9=3*216=648cm3

Hình 3:

S đáy=1/2*8*12=4*12=48cm2

V=1/3*48*20=320cm3

Hình 4:

S đáy=5*7=35m2

V=1/3*35*3=35m3

Bài 1:

Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

KA=KH

=>ΔBAK=ΔBHK

=>BA=BH

mà KA=KH

nên BK là trung trực của AH

=>BK vuông góc AH

#\(N\)

`a,` Xét Tam giác `MPH` và Tam giác `MQH` có:

`MP = MQ (g``t)`

`MH` chung

\(\widehat{MHP}=\widehat{MHQ}=90^0\)

`=>` Tam giác `MPH =` Tam giác `MQH (ch - cgv)`

`=>`\(\widehat{MPH}=\widehat{MQH}\) `( 2` góc tương ứng `)`

`b,` Vì Tam giác `MPH =` Tam giác `MQH (a)`

`=>` \(\widehat{PMH}=\widehat{QMH}\) `( 2` góc tương ứng `)`

`=> MH` là tia phân giác của \(\widehat{PMQ}\) 

`c,` Ta có: \(\widehat{MPH}=\widehat{MQH}=50^0\) `(CMT)`

Xét Tam giác `MQH` có:

\(\widehat{MHQ}+\widehat{MQH}+\widehat{QMH}=180^0\) `(`đlí tổng `3` góc trong `1` tam giác `)`

\(90^0+50^0+\widehat{QMH}=180^0\)

`->`\(\widehat{QMH}=180^0-90^0-50^0=40^0\)

 

22 tháng 12 2022

a. Những tỉnh thành phố có ca nhiễm hơn 2800 ca: Nghệ An, Bắc Ninh, Hưng Yên, Lạng Sơn, Quảng Ninh, Hà Nội. 

b. Tỉnh có số ca nhiễm Covid 19 cao nhất là: Hà Nội 

22 tháng 12 2022

a. Những tỉnh thành phố có ca nhiễm hơn 2800 ca: Nghệ An, Bắc Ninh, Hưng Yên, Lạng Sơn, Quảng Ninh, Hà Nội. 

b. Tỉnh có số ca nhiễm Covid 19 cao nhất là: Hà Nội 

10. Tính độ dài x trên hình dưới đây.11. Tính độ dài x trên hình dưới đây.12. Tính độ dài x trên các hình sau:13.* Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H ∈ BC) Biết HB = 9cm, HC = 16cm. Tính độ dài AH.14. Trên mặt phẳng tạo độ Oxy, vẽ điểm A có tọa độ (3;5). Tính khoảng cách từ điểm A đến gốc tọa độ.15. Trên mặt phẳng tọa độ Oxy, sẽ điểm A có tọa độ (1;1)....
Đọc tiếp

10. Tính độ dài x trên hình dưới đây.

11. Tính độ dài x trên hình dưới đây.

12. Tính độ dài x trên các hình sau:

13.* Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H ∈ BC) Biết HB = 9cm, HC = 16cm. Tính độ dài AH.

14. Trên mặt phẳng tạo độ Oxy, vẽ điểm A có tọa độ (3;5). Tính khoảng cách từ điểm A đến gốc tọa độ.

15. Trên mặt phẳng tọa độ Oxy, sẽ điểm A có tọa độ (1;1). Đường tròn tâm O với bán kinh Oa cắt các tia Ox, Oy theo thứ tự B và C. Tìm tọa độ của các điểm B, C.

16. Tính độ dài của các đoạn thẳng AB, BC, CD, CD trên mặt phẳng tọa độ (Hình vẽ bên, với đơn vị là đơn vị dài của hệ trục tọa độ).

MN GIÚP MK VS ....MK ĐANG CẦN RẤT GẤP, AI BIẾT GIẢI BÀI NÀO THÌ GIẢI CHI TIẾT ĐẦY ĐỦ GIÚP MK VS 

2
4 tháng 3 2020

10. 

11. 

12. 

15.

HÌNH ĐÂY NHA MN...

4 tháng 3 2020

lj có hình nào bn

loading... 

2
26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

26 tháng 1 2024

a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

loading... 

1
26 tháng 1 2024

loading... a) ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

Mà ∠ACB = ∠ECN (đối đỉnh)

⇒ ∠ABC = ∠ECN

⇒ ∠DBM = ∠ECN

Xét hai tam giác vuông: ∆DBM và ∆ECN có:

BD = CE (gt)

∠DBM = ∠ECN (cmt)

⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)

⇒ DM = EN (hai cạnh tương ứng)

b) Do DM ⊥ BC (gt)

EN ⊥ BC (gt)

⇒ DM // EN

⇒ ∠DMI = ∠ENI (so le trong)

Xét hai tam giác vuông: ∆DMI và ∆ENI có:

DM = EN (cmt)

∠DMI = ∠ENI (cmt)

⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)

⇒ MI = NI (hai cạnh tương ứng)

⇒ I là trung điểm của MN

⇒ BC cắt MN tại trung điểm I của MN

c) Do AH ⊥ BC nên AH là đường cao của ∆ABC

Mà ∆ABC cân tại A

AH cũng là đường phân giác của ∆ABC

⇒ ∠BAH = ∠CAH

⇒ ∠BAO = ∠CAO

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆OAB và ∆OAC có:

OA là cạnh chung

∠BAO = ∠CAO (cmt)

AB = AC (cmt)

⇒ ∆OAB = ∆OAC (c-g-c)

⇒ OB = OC (hai cạnh tương ứng)

Ta có:

I là trung điểm MN (cmt)

OI ⊥ MN (gt)

⇒ OI là đường trung trực của MN

⇒ OM = ON

Do ∆DBM = ∆ECN (cmt)

⇒ BM = CN (hai cạnh tương ứng)

Xét ∆OBM và ∆OCN có:

OB = OC (cmt)

OM = ON (cmt)

BM = CN (cmt)

⇒ ∆OBM = ∆OCN (c-c-c)

d) Do ∆OBM = ∆OCN (cmt)

⇒ ∠OBM = ∠OCN (hai góc tương ứng)

Do ∆OAB = ∆OAC (cmt)

⇒ ∠OBA = ∠OCA (hai góc tương ứng)

⇒ ∠OBM = ∠OCA

Mà ∠OBM = ∠OCN (cmt)

⇒ ∠OCN = ∠OCA

Mà ∠OCN + ∠OCA = 180⁰ (kề bù)

⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰

⇒ OC ⊥ AC

loading... 

2
AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Lời giải:
Trên $AC$ lấy $E$ sao cho $AB=AE$. Xét tam giác $ABD$ và $AED$ có:

$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là tia phân giác $\widehat{A}$)

$AD$ chung

$AB=AE$

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

$\Rightarrow BD=DE(1)$ và $\widehat{ABD}=\widehat{AED}$

Có:

$\widehat{DEC}=180^0-\widehat{AED}=180^0-\widehat{ABD}=\widehat{ECD}+\widehat{BAC}> \widehat{ECD}$

$\Rightarrow DC> DE(2)$

Từ $(1); (2)\Rightarrow DC> DB$

AH
Akai Haruma
Giáo viên
26 tháng 1 2024

Hình vẽ:

11 tháng 1 2024

          \(\widehat{M_1}\) = \(\widehat{M_3}\) (hai góc đối đỉnh)

         \(\widehat{M_3}\) + \(\widehat{N_1}\) = 1800 (hai góc trong cùng phía)

         \(\widehat{M_3}\)         = 1800 - \(\widehat{N_1}\) 

         \(\widehat{M_3}\)         = 1800 - 500

         \(\widehat{M_3}\)        = 1300

        ⇒ \(\widehat{M_1}\) = 1300

Kết luận: \(\widehat{M_1}\) = 1300

           

loading... 

1