Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\), ta có:
\(A=\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\times\dfrac{2}{a+b}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\)\(\times\dfrac{a^3+ab^2+a^2b+b^3}{ab^3+a^3b}\)
\(=\left(\dfrac{b+a}{ab}\times\dfrac{2}{a+b}+\dfrac{b^2+a^2}{a^2b^2}\right)\)\(\times\dfrac{a^2\left(a+b\right)+b^2\left(a+b\right)}{ab\left(a^2+b^2\right)}\)
\(=\dfrac{2ab+b^2+a^2}{a^2b^2}\times\dfrac{\left(a+b\right)\left(a^2+b^2\right)}{ab\left(b^2+a^2\right)}\)
\(=\dfrac{\left(a+b\right)^3}{a^3b^3}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{\left(xy\right)^3}}\)
Ta có: \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
\(=\sqrt{81-17}=\sqrt{64}=8\)
\(x^2-5=\left(2x-\sqrt{5}\right).\left(x+\sqrt{5}\right)\)
\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)-\left(2x-\sqrt{5}\right).\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{5}\right).\left(-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{5}=0\\-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=0\end{matrix}\right.\)
Vậy PT có nghiệm là \(x=0;x=-\sqrt{5}\)
P/S : chắc là đúng :D
a: \(=6\sqrt{2}-12\sqrt{3}-10\sqrt{2}+12\sqrt{3}=-4\sqrt{2}\)
b: \(=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\sqrt{4-3}=1\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)\)
\(=5-\sqrt{15}+\sqrt{15}-3=2\)
(Nếu đúng thì click cho mình 1 cái nhe!)
mình không hiểu chỗ : \(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\)
bấm máy tính là ra nha!