K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

ta có

sinA + sinB – sinC = 4sin (A/2) sin(B/2) cos(C/2) (2)

suy ra điều phải chứng minh.

24 tháng 7 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

\(\dfrac{\Omega}{2}< a< \Omega\)

=>\(cosa< 0\)

\(sin\alpha=\dfrac{1}{3}\)

\(\Leftrightarrow cos^2\alpha=1-sin^2\alpha=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)

mà cosa<0

nên \(cos\alpha=-\dfrac{2\sqrt{2}}{3}\)

\(cos\left(\alpha-\dfrac{\Omega}{6}\right)=cos\alpha\cdot cos\left(\dfrac{\Omega}{6}\right)+sin\alpha\cdot sin\left(\dfrac{\Omega}{6}\right)\)

\(=-\dfrac{2\sqrt{2}}{3}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{1}{3}\cdot\dfrac{1}{2}\)

\(=\dfrac{-2\sqrt{6}+1}{6}\)

21 tháng 9 2020

Đặt BC = a; CA = b; AB = c.

Theo định lý hàm sin và định lý hàm cos, ta sẽ có:

\(\frac{sinB}{sinA}=\frac{b}{a};\frac{sinC}{sinA}=\frac{c}{a};\)

\(cosB=\frac{c^2+a^2-b^2}{2ca};cosC=\frac{a^2+b^2-c^2}{2ab}\).

Do đó:

\(sinA=\frac{sinB+sinC}{cosB+cosC}\)

\(\Leftrightarrow\frac{sinB}{sinA}+\frac{sinC}{sinA}=cosB+cosC\)

\(\Leftrightarrow\frac{b}{a}+\frac{c}{a}=\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}\)

\(\Leftrightarrow b+c=\frac{c^2b+a^2b-b^3+a^2c+b^2c-c^3}{2bc}\)

\(\Leftrightarrow a^2b+a^2c-b^3-c^3=b^2c+bc^2\)

\(\Leftrightarrow\left(b+c\right)\left(b^2+c^2\right)=a^2\left(b+c\right)\Leftrightarrow a^2=b^2+c^2\).

Theo định lý Pythagoras đảo, tam giác ABC vuông tại A.

16 tháng 2 2017

đề cho mỗi vậy thôi à ?

19 tháng 2 2017

Nội suy A+B+C=180 độ

tuy nhiên đề không rõ rằng mất kiểm soát

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

a. Áp dụng công thức L'Hospital:

\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{1-x}}{\sqrt[3]{x+1}-\sqrt{1-x}}=\lim\limits_{x\to 0}\frac{\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}{\frac{1}{3}(x+1)^{\frac{-2}{3}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}=\frac{1}{\frac{5}{6}}=\frac{6}{5}\)

b.

\(\lim\limits_{x\to 0}(\frac{1}{x}-\frac{1}{x^2})=\lim\limits_{x\to 0}\frac{x-1}{x^2}=-\infty\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

c. Áp dụng quy tắc L'Hospital:

\(\lim\limits_{x\to +\infty}\frac{x^4-x^3+11}{2x-7}=\lim\limits_{x\to +\infty}\frac{4x^3-3x^2}{2}=+\infty \)

d.

\(\lim\limits_{x\to 5}\frac{7}{(x-1)^2}.\frac{2x+1}{2x-3}=\frac{7}{(5-1)^2}.\frac{2.5+11}{2.5-3}=\frac{11}{16}\)

15 tháng 10 2017

mình làm cách này là cách khj nào mà ko cách nào khác ms làm vậy thôi, áp dụng định lí sin và cosin trong tam giác

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

15 tháng 10 2017

woooooooooo lớp 11