Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
= \(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{256}-\frac{1}{512}\right)+\left(\frac{1}{512}-\frac{1}{1024}\right)\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\)
= \(1-\frac{1}{1024}\)
= \(\frac{1023}{1024}\)
b/ \(\frac{1}{8}+\frac{1}{48}+\frac{1}{80}+...+\frac{1}{10200}\)
= \(\frac{1}{8}+\frac{1}{6\times8}+\frac{1}{8\times10}+...+\frac{1}{100\times102}\)
= \(\frac{1}{8}+\frac{1}{2}\times\left(\frac{2}{6\times8}+\frac{2}{8\times10}+...+\frac{2}{100\times102}\right)\)
= \(\frac{1}{8}+\frac{1}{2}\times\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{102}\right)\)
= \(\frac{1}{8}+\frac{1}{2}\times\left(\frac{1}{6}-\frac{1}{102}\right)\)
= \(\frac{1}{8}+\frac{1}{2}\times\frac{8}{51}\)
= \(\frac{1}{8}+\frac{4}{51}\)
= \(\frac{83}{408}\)
ta có : A=1/2+1/4+..+1/1024
=> A=1/21+1/22+..+1/210
=> A.2=(1/21+1/22+..+1/210).2
=> A.2=1+1/21+1/22+..+1/29
=> 2A-A=(1+1/21+1/22+..+1/29)-(1/21+1/22+..+1/210)
=> A=1-1/210
câu 2:
A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/98*99 + 1/99*100
A = 2-1/1*2 + 3-2/2*3 + 4-3/3*4 + ... + 99-98/98*99 + 100-99/99*100
A = 2/1*2 - 1/ 1*2 + 3/2*3 - 2/2*3 + 4/ 3*4 -3/3*4 +...+ 99/98*99 - 98/98*99 + 100/99*100 - 99/99*100
A = 1 - 1/ 100
A = 99 / 100
phần 2 mk ko =bít
bài 1, 3 mk ko bít
a, \(\frac{2}{3}+\frac{2}{3}+\frac{6}{3}=\frac{10}{3}\)
b,\(\frac{3}{4}+\frac{3}{4}+\frac{3}{2}=\frac{6}{4}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{64}{64}-\frac{1}{64}=\frac{63}{64}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{481}{280}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}\)
\(=\frac{126}{128}=\frac{63}{64}\)
S=\(\frac{1}{2}\)+\(\frac{1}{4}\)+\(\frac{1}{8}\)+.............+\(\frac{1}{1024}\)
S=1-1/2+1/2-1/4+1/4-1/8+.........+1/512-1/1024
S=1-1/1024
S=1023/1024
Vậy s=1023/1024
Ta có : \(\frac{1}{2}=1-\frac{1}{2};\frac{1}{4}=\frac{1}{2}-\frac{1}{4};\frac{1}{8}=\frac{1}{4}-\frac{1}{8};...;\frac{1}{1024}=\frac{1}{512}-\frac{1}{1024}\)
Vậy \(S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
= \(1-\frac{1}{1024}=\frac{1023}{1024}\)