K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

Hình như là không

Quá dài nên có thể lẫn lộn

Cách đơn giản hơn

Ta có:

41=4

42=16

43=64

44=256

...

=>Số 4 mũ lẽ tận cùng = 4. Số 4 mũ chẵn tận cùng = 6

Áp dụng vào 42010 ta có:

42010 có mũ là số chẵn

=> 42010  tận cùng là số 6

Tương tự áp dụng vào 22014 :

Ta có: 

21= 2

22 = 4

2=

2=16

25= 32

2= 64

...

=> Số tận cùng của kết quả theo chu kì 2, 4, 8, 6.

Ta có: 2014 : 4 = 503 (dư 2)

Vậy theo chu kì thì 22014 tận cùng bằng số 4

Ta có:

42010 tận cùng = 6

22014 tận cùng = 4

Tận cùng 2 thừa số này cộng lại ra 10

=> 42010 + 22014 có tận cùng là số 0

=> 42010 + 22014 chia hết cho 10

Chúc bạn hok tốt!

#TTVN

20 tháng 3 2017

A= 22015*72020

=1585520300

20 tháng 12 2023

A = (42010 + 22014) ⋮ 10

42010  = (42)1005

42010 =  \(\overline{...6}\)1005 = \(\overline{..6}\)   (1)

22014 = (2503)4.22 =  \(\overline{..6}\)4.4

22014 = \(\overline{..6}\).4 = \(\overline{..4}\)   (2)

Cộng vế với vế của biểu thức (1) và (2) ta có:

A = 42010 + 22014 = \(\overline{..6}\) + \(\overline{..4}\) = \(\overline{..0}\)  ⋮ 10 (đpcm)

 

31 tháng 7 2023

Hiển nhiên \(P=4^{2010}+2^{2014}⋮2\). Ta chỉ cần chứng minh \(P⋮5\) là xong.

Trước hết ta chứng minh \(A=4^{2n}-1⋮5\), với mọi \(n\inℕ\)     (*)

 Với \(n=0\) thì \(A=0⋮5\). Với \(n=1\) thì \(A=15⋮5\).

 Giả sử (*) đúng đến \(n=k\). Với \(n=k+1\), ta có:

 \(A=4^{2\left(k+1\right)}-1\) \(=16.4^{2k}-1\) \(=16\left(4^{2k}-1\right)+15⋮5\), vậy (*) được chứng minh. Do đó \(4^{2010}-1⋮5\)              (1)

 Bây giờ ta sẽ chứng minh \(B=2^{4n+2}+1⋮5\) với mọi \(n\inℕ\).     (**)

 Với \(n=0\) thì \(B=5⋮5\). Với \(n=1\) thì \(B=65⋮5\).

 Giả sử (**) đúng đến \(n=k\). Với \(n=k+1\)  thì

 \(B=2^{4\left(k+1\right)+2}+1\) \(=16.2^{4k+2}+1\) \(=16\left(2^{4k+2}+1\right)-15⋮5\)

 Vậy (**) được chứng minh. Do đó \(2^{2014}+1⋮5\)         (2)

 Từ (1) và (2), suy ra \(P=4^{2010}+2^{2014}=\left(4^{2010}-1\right)+\left(2^{2014}+1\right)⋮5\)

 Như vậy \(2|P,5|P\Rightarrow10|P\) (đpcm)

15 tháng 8 2017

\(A=2^{2017}-2^{2016}-2^{2015}-..........-2^5\)

\(\Leftrightarrow A=2^{2017}-\left(2^{2016}+2^{2015}+..........+2^5\right)\)

Đặt :

\(B=2^{2016}+2^{2017}+...........+2^5\)

\(\Leftrightarrow2B=2^{2017}+2^{2016}+..........+2^6\)

\(\Leftrightarrow2B-B=\left(2^{2017}+2^{2016}+.......+2^6\right)-\left(2^{2016}+2^{2015}+......+2^5\right)\)

\(\Leftrightarrow B=2^{2017}-2^5\)

\(\Leftrightarrow A=2^{2017}-\left(2^{2017}-2^5\right)\)

\(\Leftrightarrow A=2^{2017}-2^{2017}-2^5\)

\(\Leftrightarrow A=0+2^5\)

\(\Leftrightarrow A=32\)

15 tháng 8 2017

A = 22017 - 22016 - 22015 - … - 25

= 22017 - (22016 + 22015 + … + 25)

Đặt E = 22016 + 22015 + … + 25

2E = 22017 + 22016 + … + 26

2E - E =(22017 - 22016 - … - 26) - (22016 - 22015 - … - 25)

E = 22017 - 25

=> A = 22017 - (22017 - 25)

= 22017 - 22017 + 25

= 32

25 tháng 5 2018

Câu 1:
A=1.2.3.4+2.3.4.5+3.4.5.6+...+2915.2916.2917.2918
5A=1.2.3.4.5+2.3.4.5.(6-1)+3.4.5.6(7-2)...+2915.2916.2917.2918(2919-2914)
5A=1.2.3.4.5+2.3.4.5.6-1.2.3.4.5+3.4.5.6.7-2.3.4.5.6.+...+2915.2916.2917.2918.2919-2914.2915.2916.2917.2918
5A=2915.2916.2917.2918.2919
A=2915.2916.2917.2918.2919/5

Câu 2:
Đáp án là: 541294159423242052710000000000000000000 (bấm máy tính chưa chắc đã đúng đâu)

Câu 3:
\(C=10,1+\frac{1993}{999900}=\frac{10100983}{999900}\)
Câu 4:
Chưa rõ phần vị trí mod mod j j đó

4 tháng 4 2016

S1= 1; S2=2+3; S3=4+5+6.... =>S2016 có 2016 số hạng

Số các số hạng ở trước S2016 là: 1+2+3+4+5+......+2015=2031120

=> Số hạng đầu tiên của S2016 là: 2031120+1=2031121

bạn tự tính đi