Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như là không
Quá dài nên có thể lẫn lộn
Cách đơn giản hơn
Ta có:
41=4
42=16
43=64
44=256
...
=>Số 4 mũ lẽ tận cùng = 4. Số 4 mũ chẵn tận cùng = 6
Áp dụng vào 42010 ta có:
42010 có mũ là số chẵn
=> 42010 tận cùng là số 6
Tương tự áp dụng vào 22014 :
Ta có:
21= 2
22 = 4
23 = 8
24 =16
25= 32
26 = 64
...
=> Số tận cùng của kết quả theo chu kì 2, 4, 8, 6.
Ta có: 2014 : 4 = 503 (dư 2)
Vậy theo chu kì thì 22014 tận cùng bằng số 4
Ta có:
42010 tận cùng = 6
22014 tận cùng = 4
Tận cùng 2 thừa số này cộng lại ra 10
=> 42010 + 22014 có tận cùng là số 0
=> 42010 + 22014 chia hết cho 10
Chúc bạn hok tốt!
#TTVN
A = (42010 + 22014) ⋮ 10
42010 = (42)1005
42010 = \(\overline{...6}\)1005 = \(\overline{..6}\) (1)
22014 = (2503)4.22 = \(\overline{..6}\)4.4
22014 = \(\overline{..6}\).4 = \(\overline{..4}\) (2)
Cộng vế với vế của biểu thức (1) và (2) ta có:
A = 42010 + 22014 = \(\overline{..6}\) + \(\overline{..4}\) = \(\overline{..0}\) ⋮ 10 (đpcm)
Hiển nhiên \(P=4^{2010}+2^{2014}⋮2\). Ta chỉ cần chứng minh \(P⋮5\) là xong.
Trước hết ta chứng minh \(A=4^{2n}-1⋮5\), với mọi \(n\inℕ\) (*)
Với \(n=0\) thì \(A=0⋮5\). Với \(n=1\) thì \(A=15⋮5\).
Giả sử (*) đúng đến \(n=k\). Với \(n=k+1\), ta có:
\(A=4^{2\left(k+1\right)}-1\) \(=16.4^{2k}-1\) \(=16\left(4^{2k}-1\right)+15⋮5\), vậy (*) được chứng minh. Do đó \(4^{2010}-1⋮5\) (1)
Bây giờ ta sẽ chứng minh \(B=2^{4n+2}+1⋮5\) với mọi \(n\inℕ\). (**)
Với \(n=0\) thì \(B=5⋮5\). Với \(n=1\) thì \(B=65⋮5\).
Giả sử (**) đúng đến \(n=k\). Với \(n=k+1\) thì
\(B=2^{4\left(k+1\right)+2}+1\) \(=16.2^{4k+2}+1\) \(=16\left(2^{4k+2}+1\right)-15⋮5\)
Vậy (**) được chứng minh. Do đó \(2^{2014}+1⋮5\) (2)
Từ (1) và (2), suy ra \(P=4^{2010}+2^{2014}=\left(4^{2010}-1\right)+\left(2^{2014}+1\right)⋮5\)
Như vậy \(2|P,5|P\Rightarrow10|P\) (đpcm)
\(A=2^{2017}-2^{2016}-2^{2015}-..........-2^5\)
\(\Leftrightarrow A=2^{2017}-\left(2^{2016}+2^{2015}+..........+2^5\right)\)
Đặt :
\(B=2^{2016}+2^{2017}+...........+2^5\)
\(\Leftrightarrow2B=2^{2017}+2^{2016}+..........+2^6\)
\(\Leftrightarrow2B-B=\left(2^{2017}+2^{2016}+.......+2^6\right)-\left(2^{2016}+2^{2015}+......+2^5\right)\)
\(\Leftrightarrow B=2^{2017}-2^5\)
\(\Leftrightarrow A=2^{2017}-\left(2^{2017}-2^5\right)\)
\(\Leftrightarrow A=2^{2017}-2^{2017}-2^5\)
\(\Leftrightarrow A=0+2^5\)
\(\Leftrightarrow A=32\)
A = 22017 - 22016 - 22015 - … - 25
= 22017 - (22016 + 22015 + … + 25)
Đặt E = 22016 + 22015 + … + 25
2E = 22017 + 22016 + … + 26
2E - E =(22017 - 22016 - … - 26) - (22016 - 22015 - … - 25)
E = 22017 - 25
=> A = 22017 - (22017 - 25)
= 22017 - 22017 + 25
= 32
Câu 1:
A=1.2.3.4+2.3.4.5+3.4.5.6+...+2915.2916.2917.2918
5A=1.2.3.4.5+2.3.4.5.(6-1)+3.4.5.6(7-2)...+2915.2916.2917.2918(2919-2914)
5A=1.2.3.4.5+2.3.4.5.6-1.2.3.4.5+3.4.5.6.7-2.3.4.5.6.+...+2915.2916.2917.2918.2919-2914.2915.2916.2917.2918
5A=2915.2916.2917.2918.2919
A=2915.2916.2917.2918.2919/5
Câu 2:
Đáp án là: 541294159423242052710000000000000000000 (bấm máy tính chưa chắc đã đúng đâu)
Câu 3:
\(C=10,1+\frac{1993}{999900}=\frac{10100983}{999900}\)
Câu 4:
Chưa rõ phần vị trí mod mod j j đó