Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+..+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)
\(C=1+\frac{1}{2}.\left(1+2\right).2:2+\frac{1}{3}.\left(1+3\right).3:2+\frac{1}{4}.\left(1+4\right).4:2+...+\frac{1}{2016}.\left(1+2016\right).2016:2\)
\(C=1+3:2+4:2+5:2+...+2017:2\)
\(C=2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}+5.\frac{1}{2}+...+2017.\frac{1}{2}\)
\(C=\frac{1}{2}.\left(2+3+4+5+...+2017\right)\)
\(C=\frac{1}{2}.\left(2+2017\right).2016:2\)
\(C=\frac{1}{2}.2019.2016.\frac{1}{2}\)
\(C=2019.504=1017576\)
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+\frac{2}{5}=1\)
b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{1}{3.2}-\frac{5.2}{7.3}\)
\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)
\(=\frac{7}{42}-\frac{20}{42}\)
\(=-\frac{13}{42}\)
\(a,\left[\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2\right]:\left[2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}\right)-\frac{27}{64}.4\right]:\left[2.\left(-1\right)+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}-\frac{27}{16}\right)\right]:\left[-2+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\frac{-2-27}{16}:\frac{-32+9-6}{16}\)
\(=-\frac{29}{16}:\frac{-29}{16}=1\)
\(b,\left[\left(\frac{4}{3}\right)^{-2}\left(\frac{3}{2}\right)^4\right]:\left(\frac{3}{2}\right)^6\)
\(=\left(\frac{9}{16}.\frac{81}{16}\right):\frac{729}{64}\)
\(=\frac{729}{64}:\frac{729}{64}=1\)
A = (1 - 2/3 + 4/3) - (4/5 - 1) + (7/5 + 2)
A= (3/3 - 2/3 + 4/3) - (4/5 - 5/5) + (7/5 + 10/5)
A= 5/3 + 1/5 + 17/5
A= 5/3 +18/5
A= 25/15 + 54/15
A= 79/15
B= (-3 + 3/4 - 1/3 ) : (5 + 2/5 - 2/3)
B= (-36/12 + 9/12 - 4/12) : (75/15 + 6/15 - 10/15)
B= -31/12 : 71/15
B= -155/284
C= (3/5 - 4/5 ) . (2/7 - 3/14) - (5/9 - 7/27) . (1 - 3/5) + (1 - 11/12) . (1-11/12)
C= -1/5 . 1/14 - 8/27 . 2/5 + 1/12 . 1/12
C=-1/70 - 16/135 + 1/144
C=-216/15120 - 1792/15120 + 105/15120
C=-1903/15120
\(\left(\frac{4}{9}+\frac{1}{3}\right)^2=\left(\frac{4}{9}+\frac{3}{9}\right)^2=\left(\frac{7}{9}\right)^2=\frac{49}{81}\)
\(\left(\frac{1}{2}-\frac{3}{5}\right)^3=\left(\frac{5}{10}-\frac{6}{10}\right)^3=\left(\frac{-1}{10}\right)^3=\frac{-1}{1000}\)
\(\left(\frac{-1}{5}\right)^5.\left(\frac{-6}{5}\right)^4=\frac{-5}{3125}.\frac{1296}{625}=\frac{-1296}{390625}\)
\(\left(\frac{3}{4}\right)^3:\left(\frac{3}{4}\right)^2:\left(-\frac{2}{5}\right)^3=\frac{3}{4}:\frac{-8}{125}=\frac{3}{4}.\frac{-125}{8}=\frac{-375}{32}\)
\(\text{Ta có: }Q=\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+.....+\left(\frac{3}{4}\right)^{2016}\)
\(\Rightarrow\frac{3}{4}Q=\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4+......+\left(\frac{3}{4}\right)^{2017}\)
\(\Rightarrow Q-\frac{3}{4}Q=\frac{3}{4}-\left(\frac{3}{4}\right)^{2017}\)
\(\Rightarrow\frac{1}{4}Q=\frac{3}{4}-\left(\frac{3}{4}\right)^{2017}\)
\(\Rightarrow Q=\text{[}\frac{3}{4}-\left(\frac{3}{4}\right)^{2017}\text{]}.4\)
\(\Rightarrow Q=3-\)