Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\ne0\right)=0\Leftrightarrow x=50\)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}=-4\\ \Leftrightarrow\left(\dfrac{29-x}{21}+1\right)+\left(\dfrac{27-x}{23}+1\right)+\left(\dfrac{25-x}{25}+1\right)+\left(\dfrac{23-x}{27}+1\right)=0\\ \Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}=0\\ \Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\right)=0\\ \Leftrightarrow50-x=0\left(vì.\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}\ne0\right)\\ \Leftrightarrow x=50\)
\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5.\)
\(\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)\)\(=0\)
\(\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\left(50-x\right).\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
=> 50 - x = 0 \(\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\ne0\right)\)
=> x = 50
\(pt\Leftrightarrow\frac{29}{21}-\frac{x}{21}+\frac{27}{23}-\frac{x}{23}+\frac{25}{25}-\frac{x}{25}+\frac{23}{27}-\frac{x}{27}+\frac{21}{29}-\frac{x}{29}=-5\Leftrightarrow-x\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=-5-\frac{29}{21}-\frac{27}{23}-\frac{25}{25}-\frac{23}{27}-\frac{21}{29}\Leftrightarrow-x=\frac{-5-\frac{29}{21}-\frac{27}{23}-\frac{25}{25}-\frac{23}{27}-\frac{21}{29}}{\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}}=-50\Leftrightarrow x=50\\ \Rightarrow S=\left\{50\right\}\)
\(pt\Leftrightarrow\frac{29-x}{21}+1+\frac{27-x}{23}+1+...=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
Do \(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}>0\) nên 50 - x = 0 hay x = 50.
pt<=>29-x/21+1+27-x/23+1+...=0
<=>50-x/21+50-x/23+50-x/25+50-x/27+50-x/29=0
<=>(50-x).(1/21+1/23+1/25+1/27+1/29)=0
Do 1/21+1/23+1/25+1/27+1/29>0 nên 50-x=0 hay x=50
Ta cong them 1 vao moi phan thuc:
\(\frac{X+29}{1971}+1+\frac{X+27}{1973}+1+\frac{X+25}{1975}+1=\frac{X+1971}{29}+1+\frac{X+1973}{27}+1+\frac{X+1975}{25}+1\)
\(\Leftrightarrow\frac{X+2000}{1971}+\frac{X+2000}{1973}+\frac{X+2000}{1975}=\frac{X+2000}{29}+\frac{X+2000}{27}+\frac{X+2000}{25}\)
\(\Leftrightarrow\frac{X+2000}{1971}+\frac{X+2000}{1973}+\frac{X+2000}{1975}-\frac{X+2000}{29}-\frac{X+2000}{27}-\frac{X+2000}{25}=0\)
\(\Leftrightarrow\left(X+2000\right)\left(\frac{1}{1971}+\frac{1}{1973}+\frac{1}{1975}-\frac{1}{29}-\frac{1}{27}-\frac{1}{25}\right)=0\)
Vi \(\frac{1}{1971}+\frac{1}{1973}+\frac{1}{1975}-\frac{1}{29}-\frac{1}{27}-\frac{1}{25}\ne0\) nen \(X+2000=0\Leftrightarrow X=-2000\)
Vay \(X=-2000\)