Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
Đặt \(A=1+2+2^2+2^3+....+2^{2008}\)
\(2A=2+2^2+2^3+2^4+....+2^{2019}\)
\(A=2^{2019}-1\)
\(\Rightarrow B=\frac{2^{2019}-1}{1-2^{2019}}=\frac{-\left(1-2^{2019}\right)}{1-2^{2019}}=-1\)
đặt tử là A ta có:
2A=2(1+2+22+...+22008)
2A=2+22+...+22009
2A-A=(2+22+...+22009)-(1+2+22+...+22008)
A=22009-1
thay A vào tử ta đc:\(B=\frac{2^{2009}-1}{1-2^{2009}}=-1\)
Đặt A=\(1+2+2^2+........+2^{2008}\)
2A=\(2+2^2+2^3+.............+2^{2009}\)
=>A-2A=\(\left(1+2+2^2+.........+2^{2008}\right)-\left(2+2^2+2^3+..........+2^{2009}\right)\)
=>\(-A=1-2^{2009}\)
=>\(A=-\left(1-2^{2009}\right)\)
=>\(M=\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}\)
=>\(M=-1\)
\(B=\frac{1+2^2+......+2^{2008}}{1-2^{2009}}\)
Đặt \(C=1+2^2+.......+2^{2008}\)
\(\Rightarrow2C=2+2^2+.....+2^{2009}\)
\(\Rightarrow2C-C=2+2^2+......+2^{2009}-\left(1+2^2+.........+2^{2008}\right)\)
\(\Rightarrow C=2^{2009}-1\)
\(\Rightarrow B=\frac{2^{2009}-1}{1-2^{2009}}\)
Ồ bạn Phong Trần Nam hơi thiếu rồi
Khi B=(2^2009-1)/(1-2^2009)
=> B = (2^2009-1)/-(2^2009-1)
=> B = -1(Đây mới là kết quả cuối cùng)