K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

a. 134^2 - 68.134 + 34^2 = ( 134 - 34 ) ^2 = 100^2 = 10000

b. 9^8.2^8 - ( 18^4 - 1 )(18^4 + 1 ) = 18^8 - 18^8 + 1 = 1

c. 100^2 - 99^2 + 98^2 - 97^2 + ... + 2^2 - 1 

=( 100 - 99 )( 100 + 99 ) + ( 98 - 97 )( 98 + 97 ) + ... + ( 2 - 1 )( 2 + 1 )

= 100 + 99 + 98 + 97 + ... + 2 + 1

=( 100 + 1 ).100:2 = 5050

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

8 tháng 7 2018

1272 + 146.127 + 732

= 1272 + 2 . 73 .127 + 732

= (127 + 73 ) 2

= 200 2

13 tháng 6 2018

a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)

c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)

\(=\dfrac{100\left(100+1\right)}{2}=5050\)

13 tháng 6 2018

d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)

\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)

\(=\dfrac{20\left(20+1\right)}{2}=210\)

e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)

\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)

23 tháng 11 2016

a/ A = 1002 - 992 + 982 -...+22 - 12

= (1002 - 992) + (982 - 972) +...+ (22 - 12)

= 199 + 195 + 191 + ... + 1

= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050

23 tháng 11 2016

b/ Y chang câu a luôn nha

c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)

\(=\frac{560.1000}{200^2}=14\)

15 tháng 7 2015

a) Áp dụng hằng đẳng thức ta đc:

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=199+195+191+...+3\)

\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)

15 tháng 7 2015

a) Áp dụng hằng đẳng thức ta đc:

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100+99\right)\left(100-99\right)+\left(98-97\right)\left(98+87\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=199+195+191+...+3\)

\(=\left[\left(199-3\right):4+1\right]\cdot\left(199+3\right):2=50\cdot101=5050\)

b) mk nghĩ bước đầu tiên là phải bỏ ngoặc:

 \(=20^2+18^2+16^2+...4^2+2^2-19^2-17^2-....-3^2-1^2\)

\(=\left(20^2-19^2\right)+\left(18^2-17^2\right)+...+\left(4^2-3^2\right)-1^2\)

\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(4-3\right)\left(4+3\right)-1\)

\(=\left(39+35+31+...+7\right)-1\)

\(=\left(\left[\left(39-7\right):4+1\right]\cdot\left(39+7\right):2\right)-1=207-1=206\)

24 tháng 8 2016

a) 1002-992+....+22-12

=(100+99)(100-99)+(98+97)(98-97)+...+(2+1)(2-1)

=100+99+98+...+2+1

b) bieu thuc tren =

202-192+182-172+...+22-12

tinh tuong tu cau a

24 tháng 8 2016

sai oy

18 tháng 8 2018

a)\(T=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

ta có \(2+1=2^2-1\)

\(T=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

\(T=\left(2^4-1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

\(T=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(T=2^{32}-1\)

bạn ơi nơi chổ mấy cái  \(\left(2^2-1\right)\left(2^2+1\right)\)là nhân đa thức lại nha

b)

\(U=100^2-99^2+98^2-97^2+...+4^2-3^2+2^2-1^2\)

\(U=-1^2+2^2-3^2+4^2-...-97^2+98^2-99^2+100^2\)

\(U=2^2-1^2+4^2-3^2+...+98^2-97^2+100^2-99^2\)

\(U=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)(dùng hằng đẳng thức sô 3 nha)

\(U=3+7+...+199\)

\(U=1+2+3+\text{4+...+99+100}\)

số số hạng của U là :\(\left(100-1\right):1+1=100\) (số hạng)

tổng số số hạng của U là : \(\frac{\left(100+1\right).100}{2}=5050\)

à bạn coi lại cái đề nha đoạn sau hình như thiếu 2^2 thì phải

21 tháng 10 2016

A = 1002 - 992 + 982 - 972 + . . . + 22 - 12

= (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + . . . (2 - 1)(2 + 1)

= 199 + 195 + . . . + 3

= 5050

B = 3(22 + 1)(24 + 1) . . . (264 + 1) + 1

= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1)(264 + 1) + 1

= (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (28 - 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (216 - 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (232 - 1)(232 + 1)(264 + 1) + 1

= (264 - 1)(264 + 1) + 1

= 2128 - 1 + 1

= 2128

22 tháng 10 2016

Câu C mk chép nhầm đề đó

16 tháng 8 2020

Bài 11:

1) Sửa lại đề là: \(A=127^2+146.127+73^2\)

\(\Rightarrow A=127^2+2.127.73+73^2\)

\(\Rightarrow A=\left(127+73\right)^2\)

\(\Rightarrow A=200^2\)

\(\Rightarrow A=40000\)

Vậy \(A=40000.\)

2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)

\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)

\(\Rightarrow B=18^8-\left(18^8-1\right)\)

\(\Rightarrow B=18^8-18^8+1\)

\(\Rightarrow B=0+1\)

\(\Rightarrow B=1\)

Vậy \(B=1.\)

16 tháng 8 2020

4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

\(\Rightarrow D=\frac{3^{32}-1}{2}\)