\(A=127+146.127+73^2\)

2) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Bài 11:

1) Sửa lại đề là: \(A=127^2+146.127+73^2\)

\(\Rightarrow A=127^2+2.127.73+73^2\)

\(\Rightarrow A=\left(127+73\right)^2\)

\(\Rightarrow A=200^2\)

\(\Rightarrow A=40000\)

Vậy \(A=40000.\)

2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)

\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)

\(\Rightarrow B=18^8-\left(18^8-1\right)\)

\(\Rightarrow B=18^8-18^8+1\)

\(\Rightarrow B=0+1\)

\(\Rightarrow B=1\)

Vậy \(B=1.\)

16 tháng 8 2020

4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

\(\Rightarrow D=\frac{3^{32}-1}{2}\)

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

8 tháng 7 2018

1272 + 146.127 + 732

= 1272 + 2 . 73 .127 + 732

= (127 + 73 ) 2

= 200 2

11 tháng 8 2020

a, \(A=\left(100+50\right)^2=22500\)

b, \(B=\left(127+73\right)^2=40000\)

c, \(C=-6x+25\)Thay x = 100 ta có : 

\(C=-6.100+25=-600+25=-575\)

11 tháng 8 2020

\(A=100^2+200.50+50^2\)

\(=100^2+2.100.5+50^2\)

\(=\left(100+50\right)^2=150^2\)

\(B=127^2+146.127+73^2\)

\(=127^2+2.73.127+73^2\)

\(=\left(127+73\right)^2=200^2\)

13 tháng 6 2018

a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)

c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)

\(=\dfrac{100\left(100+1\right)}{2}=5050\)

13 tháng 6 2018

d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)

\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)

\(=\dfrac{20\left(20+1\right)}{2}=210\)

e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)

\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

17 tháng 7 2019

B1: a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)

=> \(\left|x-2\right|+\left(3y+2x\right)^2=0\)

Ta có: \(\left|x-2\right|\ge0\forall x\)

         \(\left(3y+2x\right)^2\ge0\forall x;y\)

=> \(\left|x-2\right|+\left(3y+2x\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-2=0\\3y+2x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2x\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2.2=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{4}{3}\end{cases}}\)

Vậy ...

17 tháng 7 2019

\(A=263^2+74.263+37^2\)

\(=263^2+2.263.37+37^2\)

\(=\left(263+37\right)^2\)

\(=300^2=90000\)

\(B=136^2-92.136+46^2\)

\(=136^2-2.136.46+46^2\)

\(=\left(136-46\right)^2\)

\(=90^2=8100\)

4 tháng 7 2018

1)  \(63^2-47^2=\left(63+47\right)\left(63-47\right)=110.16=1760\)

2)  \(127^2+146.127+73^2=\left(127+73\right)^2=200^2=40000\)

3)  \(215^2-105^2=\left(215-105\right)\left(215+105\right)=110.320=35200\)

4) mk chỉnh lại đề:

 \(\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)...\left(4^{256}+1\right)\)

\(=\frac{1}{3}\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)...\left(4^{256}+1\right)\)

\(=\frac{1}{3}\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)...\left(4^{256}+1\right)\)

\(=\frac{1}{3}\left(4^4-1\right)\left(4^4+1\right)...\left(4^{256}+1\right)\)

\(=\frac{1}{3}\left(4^{512}-1\right)\)

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được