K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

\(50^2-49^2+48^2-47^2+...+2^2-1^2\)

\(=\left(50+49\right)+\left(48+47\right)+...+\left(2+1\right)\)

\(=\frac{\left(50+1\right)\left[\left(50-1\right)+1\right]}{2}=1275\)

22 tháng 9 2021

bạn nào trả lời cho mình đi

 

22 tháng 9 2021

khocroikhocroikhocroi

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

a) A= 5. 34- (152-1).(152+1)

      =(5.3)4-154-1

      =154-154-1

      =-1

18 tháng 10 2021

\(a,=15\left(64+36\right)+100\cdot25+100\cdot60\\ =100\left(15+25+60\right)=100\cdot100=10000\\ b,Sửa:47^2+48^2-25^2+94\cdot48=\left(47+48\right)^2-25^2\\ =95^2-25^2=\left(95-25\right)\left(95+25\right)=70\cdot120=8400\)

20 tháng 10 2019

a) Ta có 15.64 + 25.100 + 36.15 + 60.100

= (15.64 + 36.15) + (25.100 + 60.100)

= 100.(15 + 85) = 10000.

b) Ta có 47 2   +   48 2  - 25 + 94.48

= ( 47 2 +2.47.48+ 48 2 ) - 5 2  = ( 47   +   48 ) 2  - 5 2  =9000.

c) Ta có 93 -92.(-l)-9.11 + (-l).ll

= (93 +92)-(9.11 + 1.11)

= 92(9 +1) -ll.(9 + l) = 700.

AH
Akai Haruma
Giáo viên
23 tháng 6 2023

1. 

$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$

2.

$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$

3. Không phù hợp để tính nhanh 

4. 

$=15^8-(15^8-1)=1$

5.

$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$

$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$

$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$

$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$

DT
23 tháng 6 2023

6:

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)

31 tháng 8 2021

a) = (50-1)^2 = 50^2 - 2.50 + 1 = 2500 - 100 + 1 = 2401

31 tháng 8 2021

b) = (50+1)^2 = 50^2 + 2.50 + 1 = 2601

13 tháng 8 2021

a) 2,83.5,68-2,83.4,68+1,17.5,68-1,17.4,68

= 2,83.(5,86-4,86)+1,17.(5,86-4,86)=2,83.1+1,17.1=4

b) 1112-1372-482+96.137

= 1112-(1372-2.48.137+482)=1112-(137-48)2=1112-892=(111-89)(111+89)=22.200=4400

13 tháng 8 2021

a) 2,83.5,68-2,83.4,68+1,17.5,68-1,17.4,68

= (2,83.5,68-2,83.4,68)+(1,17.5,68-1,17.4,68)

=2,83.(5,68-4,68)+1,17(5,68-4,68)=2,83+1,17=4

 

3 tháng 7 2021

a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)

b)

\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)

 

AH
Akai Haruma
Giáo viên
3 tháng 7 2021

Lời giải:

a. $153^2-53^2=(153-53)(153+53)=100.206=20600$

b. 

$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$

$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$

$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$

$=2020+2019+2018+2017+...+2+1$

$=\frac{2020.2021}{2}=2041210$

29 tháng 6 2023

\(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=199+195+...+3\)

Số lượng số hạng:

\(\left(199-3\right):4+1=50\) (số hạng)

Tổng:

\(\left(3+199\right)\times50:2=5050\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

$=(100^2-99^2)+(98^2-97^2)+....+(2^2-1^2)$

$=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)$

$=100+99+98+97+...+2+1=100(100+1):2=5050$

5 tháng 11 2018