K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow2^{64}-1\)

11 tháng 10 2016

A = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (28 - 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (216 - 1)(216 + 1)(232 + 1) - 264

A = (232 - 1)(232 + 1) - 264

A = 264 - 1 - 264

A = -1

10 tháng 8 2023

7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)

\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)

\(A=-\left(1+2+3+...+2004\right)+2005^2\)

\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)

\(A=-1002.2005+2005^2\)

\(A=2005\left(2005-1002\right)=2005.1003=2011015\)

10 tháng 8 2023

8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{64}-1\right)-2^{64}\)

\(B=-1\)

30 tháng 11 2022

\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)

31 tháng 10 2018

Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^{32}-1\right)-2^{32}\)

\(=-1\)

31 tháng 10 2018

(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32

=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32=(2^4-1)(2^4+1)(2^8+1)(2^16+1)-2^32

=(2^8-1)(2^8+1)(2^16+1)-2^32=(2^16-1)(2^16+1)-2^32=2^32-1-2^32=-1

1 tháng 8 2016

VT=[(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)]/2

=[(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)]/2

=[(2^4-1(2^4+1)(2^8+1)(2^16+1)]/2

=[(2^8-1)(2^8+1)(2^16+1)]/2

=[(2^16-1)(2^16+1)]/2

=(2^32-1)/2

1 tháng 8 2016

cau nau de sai roi

26 tháng 6 2015

(2+1)(2^2+1)(2^4 +1)(2^8+1)(2^16+1) - 2^32

=1.(2+1)(22+1)(24 +1)(28+1)(216+1) - 232

=(2-1).(2+1)(22+1)(24 +1)(28+1)(216+1) - 232

=(22-1)(22+1)(24 +1)(28+1)(216+1) - 232

=(24-1)(24 +1)(28+1)(216+1) - 232

=(28-1)(28+1)(216+1) - 232

=(216-1)(216+1) - 232

=232-1-232

=-1

26 tháng 6 2015

    (2+1 ) ( 2^2 + 1) ... (2^16 + 1) - 2^32

=  3 ( 2^2 + 1) ....( 2^16 + 1) -2^32

= ( 2^2 - 1)( 2^2 +1)....(2^16  + 1 ) - 2^32

= (2^4 - 1)( 2^4 + 1)( 2^8 + 1)( 2^16 + 1) - 2^32

= ( 2^8 - 1) ( 2^8 + 1) ( 2^16  - 1 ) - 2^32

= ( 2^ 16 - 1) (2^16 + 1) - 2^32

= 2^32 - 1 - 2^32

=-1

Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1< 2^{32}\)

\(\Leftrightarrow A< B\)