Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\dfrac{49}{50}< 1\)
Để giải phương trình \( y:(\frac{1}{2} \times 4+\frac{1}{4} \times 6+\frac{1}{6} \times 8+\frac{1}{8} \times 10) \times y=\frac{1}{3} \), ta có thể làm như sau:
Đầu tiên, tính giá trị của phần tử ngoặc đơn trong phương trình:
\( \frac{1}{2} \times 4+\frac{1}{4} \times 6+\frac{1}{6} \times 8+\frac{1}{8} \times 10 \).
\( = \frac{2}{2} \times 4+\frac{1}{2} \times 6+\frac{1}{3} \times 8+\frac{1}{4} \times 10 \).
\( = 2+3+\frac{8}{3}+\frac{10}{4} \).
\( = 2+3+\frac{8}{3}+2.5 \).
\( = 5+2.667+2.5 \).
\( = 10.167 \).
Tiếp theo, thay giá trị tính được vào phương trình:
\( y \times 10.167 = \frac{1}{3} \).
Để tìm giá trị của y, ta chia cả hai vế của phương trình cho 10.167:
\( y = \frac{\frac{1}{3}}{10.167} \).
Tiếp tục tính toán:
\( y = \frac{1}{3} \times \frac{1}{10.167} \).
\( y \approx 0.030 \).
Vậy giá trị của y là khoảng 0.030.
[1/(2 × 4) + 1/(4 × 6) + 1/(6 × 8) + 1/(8 × 10)] × y = 1/3
(1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + 1/8 - 1/10) × y = 1/3
(1/2 - 1/10) × y = 1/3
2/5 × y = 1/3
y = 1/3 : 2/5
y = 5/6
\(\frac{1}{2x4}\)+ \(\frac{1}{4x6}\)+ ... + \(\frac{1}{98x100}\)= \(\frac{1}{2}\)x(\(\frac{4-2}{2x4}\)+\(\frac{6-4}{4x6}\)+ ... + \(\frac{100-98}{98x100}\))
= \(\frac{1}{2}\)x(\(\frac{1}{2}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{8}\)+ ... + \(\frac{1}{98}\)-\(\frac{1}{100}\))
= \(\frac{1}{2}\)x(\(\frac{1}{2}\)-\(\frac{1}{100}\)) = \(\frac{49}{200}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{96.98}+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
1/2.4 + 1/4.6 + 1/6.8 + ... + 1/96.98 + 1/98.100
= 1/2.(2/2.4 + 2/4.6 + 2/6.8 + ... + 2/96.98 + 2/98.100)
= 1/2.(1/2 - 1/4 + 1/4 - 1/6 + ... + 1/96 - 1/98 + 1/98 - 1/100)
= 1/2.(1/2 - 1/100)
= 1/2.49/100
= 49/200
\(E=\dfrac{1}{1\times2}+\dfrac{2}{2\times4}+\dfrac{3}{4\times7}+\dfrac{4}{7\times11}+\dfrac{5}{11\times16}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)
\(=1-\dfrac{1}{16}=\dfrac{15}{16}\)
#kễnh
\(A=\frac{1}{1\times2}+\frac{1}{2\times4}+\frac{1}{4\times6}+...+\frac{1}{28\times30}\)
\(2\times A=1+\frac{2}{2\times4}+\frac{2}{4\times6}+...+\frac{2}{28\times30}\)
\(=1+\frac{4-2}{2\times4}+\frac{6-4}{4\times6}+...+\frac{30-28}{28\times30}\)
\(=1+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{28}-\frac{1}{30}\)
\(=1+\frac{1}{2}-\frac{1}{30}\)
\(=\frac{22}{15}\)
\(\Rightarrow A=\frac{11}{15}\)
cam on bn nha