Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(A=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
A=3/10.13 +3/13.16+ 3/16.19+....+3/58.61
A=1/10.13+1/13.16+1/16.19+.....+1/58.61
A=1/10- 1/13+ 1/13- 1/16+ 1/16- 1/19+...+1/58 –1/61
A=1/10 – 1/61
A= 61/610 – 10/610
A= 51/610
Mình giải xong rồi k nhá?
3 câu như nhau cả thôi :v
\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{55\cdot57}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{55\cdot57}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{55}-\frac{1}{57}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{57}\right)\)
\(A=\frac{1}{2}\cdot\frac{56}{57}\)
\(A=\frac{28}{57}\)
\(1,\\ \dfrac{3}{5}=\dfrac{21}{35};\dfrac{4}{7}=\dfrac{20}{35}\\ \dfrac{2}{3}=\dfrac{4}{6};\dfrac{5}{6}=\dfrac{5}{6}\\ \dfrac{4}{9}=\dfrac{8}{18};\dfrac{1}{6}=\dfrac{3}{18}\\ 2,\\ \dfrac{5}{9}=\dfrac{10}{18};\dfrac{7}{8}=\dfrac{14}{16};\dfrac{24}{42}=\dfrac{12}{21}\)
1. \(\dfrac{3}{5}=\dfrac{21}{35};\dfrac{4}{7}=\dfrac{20}{35}\)
\(\dfrac{2}{3}=\dfrac{4}{6};\dfrac{5}{6}=\dfrac{5}{6}\)
\(\dfrac{4}{9}=\dfrac{16}{36};\dfrac{1}{6}=\dfrac{6}{36}\)
2. \(\dfrac{5}{9}=\dfrac{10}{18}\)
\(\dfrac{7}{8}=\dfrac{14}{16}\)
\(\dfrac{24}{42}=\dfrac{12}{21}\)
C = 3/4.7 + 3/7.10 + 3/10.13 + ... + 3/73.76
=1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ... + 1/73 - 1/76
=1/4 - 1/76
=18/76
\(C=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+......+\frac{1}{73}-\frac{1}{76}\)
\(=\frac{1}{4}-\frac{1}{76}\)
\(=\frac{19}{76}-\frac{1}{76}\)
\(=\frac{18}{76}=\frac{9}{38}\)
A = 1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4)+...+ (1 + 2 + 3+...+ 30)
A = 1 + (2+1)\(\times\)2: 2+ (3+1)\(\times\)3: 2 + ....+ (30 +1) \(\times\) 30: 2
A = 1 + 2 \(\times\)3: 2 + 3 \(\times\) 4 : 2 +...+ 30 \(\times\) 31:2
A = \(\dfrac{2+2\times3+3\times4+...+30\times31}{2}\)
Đặt B = 2 + 2 \(\times\) 3 + 3 \(\times\) 4 +...+ 30 \(\times\) 31
1 x 2 x 3 = 1 x 2 x3 = 1 x 2 x 3
2 x 3 x 3 = 2 x 3 x ( 4 - 1) = 2 x 3 x 4 - 1 x 2 x 3
3 x 4 x 3 = 3 x 4 x (5- 2) = 3 x 4 x 5 - 2 x 3 x 4
...........................................................................
30 x 31 x 3 = 30 x 31 x (32 - 29) = 30 x 31 x 32 - 29 x 31 x 30
Cộng vế với vế ta có:
B x 3 = 30 x 31 x 32 ⇒ B = 30 x 31 x 32 : 3 = 14880
A = B : 2 = 14880 : 2 = 7440
\(\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}+\frac{3}{128}+\frac{3}{256}+\frac{3}{512}+\frac{3}{1024}\)
=\(3.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}+\frac{1}{128}-\frac{1}{256}+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{1024}\right)=3.\left(\frac{1024}{1024}-\frac{1}{1024}\right)=3.\frac{1023}{1024}=\frac{3069}{1024}\)
Chúc em học tốt
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+...+100}\)
\(=3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\)
\(=\frac{2}{2}.\left(3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\right)\)
\(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)
\(=6.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6.\left(1-\frac{1}{101}\right)\)
\(=6.\frac{100}{101}=\frac{600}{101}\)
Vậy \(A=\frac{600}{101}\)
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(A=\frac{3.2}{2}+\frac{3.2}{\left(1+2\right).2}+\frac{3.2}{\left(1+2+3\right).2}+...+\frac{3.2}{\left(1+2+...+100\right).2}\)
\(A=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)
\(A=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)
\(A=6\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=6\cdot\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)
Vay A = ........
\(\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{58\cdot61}\)
\(=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{58}-\frac{1}{61}\)
\(=\frac{1}{10}-\frac{1}{61}\)
\(=\frac{51}{610}\)
\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{58.61}\)
\(=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(=\frac{1}{10}-\frac{1}{61}\)
\(=\frac{51}{610}\)
Học tốt !