Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tong trên là A
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}+\frac{1}{7129}+\frac{1}{2187}\)
\(3A=\frac{1}{3}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{729}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}-\frac{1}{243}-\frac{1}{729}-\frac{1}{2187}\)
\(2A=1-\frac{1}{2187}\)
\(2A=\frac{2186}{2187}\)
\(A=\frac{2186}{2187}:2\)
\(A=\frac{1093}{2187}\)
Vậy tổng A = \(\frac{1093}{2187}\)
\(3y=3\cdot\frac{1}{1}+3\cdot\frac{1}{3}+3\cdot\frac{1}{9}+...+3\cdot\frac{1}{729}+3\cdot\frac{1}{2187}\)
\(=3+\frac{1}{1}+\frac{1}{3}...+\frac{1}{729}\)
=> \(3y-y=3+\frac{1}{1}+\frac{1}{3}+..+\frac{1}{729}-\frac{1}{1}-\frac{1}{3}-...-\frac{1}{2187}\)
<=> 2y = 3- 1/2187
=> y = \(\frac{3-\frac{1}{2187}}{2}\)
\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3A-A=1-\frac{1}{729}\)
\(\Rightarrow2A=\frac{728}{729}\)
\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)
Đặt A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
3A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
3A - A = (\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - (\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\))
2A = 1 - \(\frac{1}{729}\) = \(\frac{728}{729}\)
A = \(\frac{728}{729}:2=\frac{364}{729}\)
a, Gọi biểu thức đó là A
Ta có :
A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
A x 3 = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{729}\)
A x 3 = \(1+A-\frac{1}{729}\)
A x 3 = \(\frac{728}{729}+A\)
A x 2 + A = \(\frac{728}{729}+A\)
A x 2 = \(\frac{728}{729}\)(bỏ A ở cả 2 vế)
A = \(\frac{728}{729}\div2=\frac{364}{729}\)
Đáp án = \(\frac{364}{729}\)
b, Phần này mình nghĩ là bạn sai đề rồi. Phải là \(\frac{45\times16-17}{45\times15+28}\)
Bài 1
=1093/2187
Bai 2
số nhỏ nhất trong các số trên là:2007/2008
Bai 3
Ta co :111111/151515=11/15 & 11032/15030=11/15
vì 11/15=11/15 nên 111111/151515=11022=15030
bài 22
111111/151515=11022/15030
bài 15
2004/2005 nhỏ nhất
bài 18
=1093/2187
A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A * 3= 3* ( 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
A* 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A * 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
A * 2 = 1 - 1/ 729
A * 2 = 1/728
A = 1/728 : 2
A = 2/728
Nếu không quy đồng Mẫu thì ta quy đồng Tử
P/S: 2/728 VÀ 1/2
1/2 = 1*2/ 2*2
= 2/4
So sánh 2/4 và 2/278 ta thấy phân số 2/4 lớn hơn.
Vậy 1/2 > A
Đ/S: A = 2/728
1/2 > A
\(A=\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}+\frac{1}{3x3x3x3x3x3}.\)
\(3xA=1+\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}\)
\(2xA=3xA-A=1-\frac{1}{3x3x3x3x3x3}\)
\(A=\frac{1}{2}-\frac{1}{3x3x3x3x3x3}< \frac{1}{2}\)
#)Giải :
Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{3^n}\left(n\in N\right)\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^n}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^n}}{2}\)
Giả sử ABCD là một hình vuông có cạnh là 1 đơn vị. Diện tích hình đó là 1.
Diện tích hình chữ nhật S1 bằng \(\frac{1}{3}\) hình vuông nên có diện tích là:
S1 = \(\frac{1}{3}\)
Chia ba phần còn lại của hình vuông ABCD, ta được hình vuông S2. Diện tích hình S2 bằng\(\frac{1}{9}\)hình vuông ABCD nên:
S2 = \(\frac{1}{9}\)
Tiếp tục chia ba phần con lại của của hình vuông ABCD, ta được hình chữ nhật S3 có diện tích:
S3 = \(\frac{1}{27}\)
Tiếp tục làm như thế và cộng lại, ta có:
S1 + S2 + S3 + S4 + S5 + S6 + ... = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)
Như vậy càng kéo dài tổng diện tích của các hình đó thì tổng ấy sẽ tiến dần đến diện tích hinh vuông ABCD, hay nói cách khác:
S1 + S2 + S3 + S4 + S5 + S6 + ... = SABCD
hoặc \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)= 1
a=1 +1/3 +1/3^2 +1/3^3 +1/3^4 +1/3^5+1/3^6
3a=3 +1 +1/3 +1/3^2 + 1/3^3 +...+1/3^5
3a -a=[3 +1 +1/3 +1/3^2 +...+1/3^5] -1 -1/3 -1/3^2 -.........-1/3^6
2a =3- 1/3^6
a=[3-1/3^6] :2
Đặt \(D=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(\Leftrightarrow D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}\)
\(\Leftrightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Leftrightarrow3D-D=2D=1-\frac{1}{3^6}\)
\(\Leftrightarrow D=\left(1-\frac{1}{3^6}\right)\div2\)
Vậy kết quả của bạn là gì , zZz NCTK zZz ?