K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{999}.\dfrac{1}{1000}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\\ =1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

5 tháng 4 2017

ta có

1/1.1/2=1-1/2

1/2.1/3=1/2-1/3

1/3.1/4=1/3-1/4

............

1/999.1/1000=1/999-1/1000

Từ đó suy ra

1/1.1/2+1/2-1/3+1/3+.......+1/998.1/999+1/999.1/1000

=1/1-1/2+1/2-1/3+1/3-.....+1/998-1/999+1/999-1/1000

=1-1/1000

=1000/1000-1/1000

=999/1000

nhớ like bạn nhéhihi

Ta có: D\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)

\(\Leftrightarrow D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2004}{2005}=\dfrac{1.2.3...2004}{2.3.4...2005}=\dfrac{1}{2005}\)

Ta có: \(E=\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}...\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}=\dfrac{\left(1.2.3.4...1000\right)\left(1.2.3.4...1000\right)}{\left(1.2.3....1000\right)\left(3.4.5....1001\right)}=\dfrac{2}{1001}\)

24 tháng 4 2021

bn lm sai rồi

31 tháng 5 2021

Ta có \(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}=\dfrac{1}{6}-\dfrac{1}{6}=0\) nên Q = 0.

23 tháng 7 2021

Q=...
có thấy đa thức Q ghi j đâu

24 tháng 3 2023

A = ( \(\dfrac{1}{2}\) + 1)(\(\dfrac{1}{3}\) + 1).(\(\dfrac{1}{4}\) + 1)....(\(\dfrac{1}{999}\) + 1)

A = \(\dfrac{3}{2}\).\(\dfrac{4}{3}\).\(\dfrac{5}{4}\).......\(\dfrac{1000}{999}\)

A = \(\dfrac{3.4.5......999}{3.4.5......999}\)\(\dfrac{1000}{2}\)

A = 1 \(\times\) 500

A = 500

\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{101}{200}\)

 

21 tháng 4 2021

1. \(\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

\(=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right).0\)

\(=0\)

30 tháng 7 2017

Q=\(\dfrac{1}{2}\).\(\dfrac{2}{3}\).\(\dfrac{3}{4}\)...\(\dfrac{998}{999}\).\(\dfrac{999}{1000}\)

Q=\(\dfrac{1.2.3...998.999}{2.3.4....999.1000}\)

=>Q=\(\dfrac{1}{1000}\)

1 tháng 4 2022

\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\)

\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\cdot\dfrac{0}{6}\)

\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{9999}\right)\cdot0\)

\(Q=0\)

18 tháng 6 2018

\(M=\dfrac{8}{3}\cdot\dfrac{2}{5}\cdot\dfrac{3}{8}\cdot10\cdot\dfrac{19}{92}\\ =\dfrac{8\cdot2\cdot3\cdot10\cdot19}{3\cdot5\cdot8\cdot92}\\ =\dfrac{8\cdot2\cdot3\cdot2\cdot5\cdot19}{3\cdot5\cdot8\cdot2\cdot2\cdot23}\\ =\dfrac{19}{23}\)

\(N=\dfrac{5}{7}\cdot\dfrac{5}{11}+\dfrac{5}{7}\cdot\dfrac{2}{11}-\dfrac{5}{7}\cdot\dfrac{14}{11}\\ =\dfrac{5}{7}\cdot\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\\ =\dfrac{5}{7}\cdot\left(-\dfrac{7}{11}\right)\\ =-\dfrac{5}{11}\)

\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot0\\ =0\)