K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

a/

\(A=1.2+1.2+2.3+2.2+3.4+3.2+...+66.67+66.2=\)

\(=\left(1.2+2.3+3.4+...+66.67\right)+2\left(1+2+3+...+66\right)\)

Đặt

\(B=1+2+3+...+66=\dfrac{66\left(1+66\right)}{2}=2211\)

Đặt 

\(C=1.2+2.3+3.4+...+66.67\)

\(3C=1.2.3+2.3.3+3.4.3+...+66.67.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+66.67.\left(68-65\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-65.66.67+66.67.68=\)

\(=66.67.68\Rightarrow C=\dfrac{66.67.68}{3}=22.67.68\)

\(\Rightarrow A=C+2B\) Bạn tự tính nhé

b/

\(B=2\left(1.50+2.49+3.48+...+25.26\right)=\)

Ta có

\(C=1.50+2.49+3.48+...+25.26=\)

\(\left(50-49\right).50+\left(50-48\right).49+\left(50-47\right).48+...+\left(50-25\right).26=\)

\(=50.50-49.50+50.49-48.49+50.48-47.48+50.26-25.26=\)

\(=50.\left(26+27+28+...+50\right)-\left(25.26+26.27+27.28+...+49.50\right)\)

Ta có

\(D=26+27+28+...+50=\dfrac{25.\left(26+50\right)}{2}=950\)

Ta có

\(E=25.26+26.27+27.28+...+49.50\)

\(3E=25.26.3+26.27.3+27.28.3+...+49.50.3=\)

\(=25.26.\left(27-24\right)+26.27.\left(28-25\right)+...+49.50.\left(51-48\right)=\)

\(=-24.25.26+25.26.27-25.26.27+26.27.28-...-48.49.50+49.50.51=\)

\(=49.50.51-24.25.26\)

\(\Rightarrow E=\dfrac{49.50.51-24.25.26}{3}\)

\(\Rightarrow C=50D-E\)

\(B=2C\)

Bạn tự tính nhé

20 tháng 8 2023

\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(\dfrac{3}{2}A=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{97-94}{94.97}\)

\(\dfrac{3}{2}A=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{97}{94.97}-\dfrac{94}{94.97}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(\dfrac{3}{2}A=1-\dfrac{1}{97}=\dfrac{96}{97}\)

⇒ A = \(\dfrac{96}{97}:\dfrac{3}{2}=\dfrac{64}{97}\)

Câu B cách làm tương tự, thắc mắc gì bạn cứ hỏi nhé.

21 tháng 5 2018

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)

\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\cdot\frac{48}{98}\)

\(A=\frac{16}{98}=\frac{8}{49}\)

\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)

\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)

\(B=2\cdot\frac{33}{100}\)

\(B=\frac{33}{50}\)

21 tháng 5 2018

A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98

3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98

3A = 1/2 - 1/98

3A = 24/49

A = 24/49 : 3

A = 72/49

B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100

3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100

3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100

3/2B = 1 - 1/100

3/2B = 99/100

B = 99/100 : 3/2

B = 33/50

1 tháng 3 2016

em xin chịu

19 tháng 12 2014

a) tích có 100 thừa số => n=100 
=> A=0 :)) 

7 tháng 11 2017

 3C = 3.[1.2 +2.3 +3.4 + ... + n(n - 1)] + 3.(2 + 4 + 6 + ... + 2n)

                    = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n - 1).3 + 3.(2 + 4 + 6 + ... + 2n)

Nên C  =  n(n-1)(n+5):3

10 tháng 8 2017

Tính nhanh:

\(A=\frac{2}{1+2}+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)

Đặt \(A=\frac{2}{1+2}+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)

\(=2-1+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)

\(=\) Không biết! Nhờ Doraeiga  với At the speed of light - Trang của At the speed of light - Học toán với OnlineMath giải nhé! Tui mới lớp 6 thôi! Chưa học tới bài này

10 tháng 8 2017

\(A=\frac{2}{1+2}+\frac{2+3}{1+2+3}+....+\frac{2+3+...+20}{1+2+3+...+20}\)

\(A=\frac{2}{3}+\frac{5}{6}+...+\frac{209}{210}\)

\(A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{210}\right)\)

\(A=\left(1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{210}\right)\)

\(A=19-\left(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{420}\right)\)

\(A=19-\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\right)\)

\(A=19-\left[2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\right]\)

\(A=19-\left[2\cdot\left(\frac{1}{2}-\frac{1}{21}\right)\right]\)

\(A=19-\left[2\cdot\frac{19}{42}\right]=19-\frac{19}{21}=\frac{380}{21}\)

Vậy A = .....