K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Theo 7 hằng đẳng thức đáng nhớ ta có :

a ) \(101^2-2.101+1=\left(101-1\right)^2=100^2=10000\)

b ) \(99.101=\left(100-1\right)\left(100+1\right)=100^2-1^2=10000-1=9999\)

c ) \(99^2+2.99+1=\left(99+1\right)^2=100^2=10000\)

A=1+3+6+10+...+4851+4950 2A

=2+6+12+20+...+9702+9900

2A=1.2+2.3+3.4+4.5+...+98.99+99.100

Xét B=1.2+2.3+3.4+4.5+...+98.99+99.100

3B=1.2.3+2.3(4−1)+3.4(5−2)+...+99.100(101−98)

3B=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+99.100.101−98.99.100

3B=99.100.101 B=333300

Thay B vào A ta được:

2A=333300

A=166650 

nguồn:Câu hỏi của Nguyễn Nguyệt Minh - Toán lớp 6 - Học toán với OnlineMath

A=6+16+30+48+...+19600+19998

A : 2 = 3 + 8 + 15 + 24 + . . . + 9800 + 9999

A : 2 = 1.3 + 2.4 + 3.5 + 4.6 + . . . + 98.100 + 99.101

A : 2 = 1.[1+2] + 2.[1+3] + 3.[1+4] + 4.[1+5] + . . . + 98.[1+99] + 99.[1+100]

A : 2 = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 + 4.5 + . . . + 98 + 98.99 + 99 + 99.100

A : 2 = 1 + 2 + 3 + 4 + . . . + 199 + 1.2 + 2.3 + 3.4 + 4.5 + . . . + 98.99 + 99.100

A : 2 = 4950 + 333300

A = 676500 

nguồn:Câu hỏi của trinh thi quynh anh - Toán lớp 7 - Học toán với OnlineMath

Ta có : 

         1002 > 99 . 100

         1012 > 100 . 101

            ..............

         2002 > 199. 200

=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)

=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\)    \(\left(1\right)\)

Tương tự ta có :

    A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)

=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)

=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)

=>  A > \(\frac{1}{200}\)                   \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)Ta có : 

             \(\frac{1}{200}< A< \frac{1}{99}\)

=> ĐPCM