K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

a,=1/2-1/5+1/5-1/8+1/8-1/11+...+1/17-1/20

    =1/2-1/20=19/20

b,=5.(1-1/6+1/6-1/11+...+1/26-1/31)

    =5.(1-1/31)=5.30/31 =150/31

8 tháng 5 2015

A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101

A = 2 - 2/101 = 200/101

B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51

B = 3-3/51(tự tính nhé)

C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31

C = 5(5-1/31)(tự tính)

D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)

2E nhân lên rồi giải giống trên

3F Rồi nhân 4/77 và rút gọn thì tính được

16 tháng 7 2015

a, A= \(\frac{1}{1}\)\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)

A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))

A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0

A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)

14 tháng 6 2016

a) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)

                                                              \(=1-\frac{1}{32}=\frac{31}{32}\)

b) \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)\

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(\frac{1}{4}-\frac{1}{6}=\frac{1}{12}\)

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

21 tháng 3 2022

Mọi người đánh giúp mình nhé! Hạn là tối nay!!

28 tháng 6 2017

CÂU 1 = -59/111

 CÂU 2 = 11/63

     

28 tháng 6 2017

cảm ơn kết quả thì mik b òi nhưng mik cần cách làm

5 tháng 7 2019

#)Giải :

a)\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

5 tháng 7 2019

a) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{24.25}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{24}-\frac{1}{25}\)

\(\frac{1}{5}-\frac{1}{25}\)

\(\frac{4}{25}\)

b) \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(1-\frac{1}{101}\)

\(\frac{100}{101}\)

c) \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)

\(5\frac{2}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)

\(5\frac{2}{7}\)

\(\frac{37}{7}\)

29 tháng 6 2017

dễ mak bn!!!

29 tháng 6 2017

dễ thì làm hộ ik 

1 tháng 4 2016

Cây a, bạn nhân cả 2 vế với 3

Lấy vế nhân với 3 trừ đi ban đầu tất cả chia 2

b) Tính như bình thường

Câu c hình như sai đề

1 tháng 4 2016

a) \(1-\frac{1}{3^{101}}\)