K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{201}-\dfrac{1}{203}=\dfrac{202}{203}\)

b: \(=-4\left(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{2015\cdot2018}\right)\)

\(=-\dfrac{4}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{2015\cdot2018}\right)\)

\(=\dfrac{-4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{2015}-\dfrac{1}{2018}\right)\)

\(=\dfrac{-4}{3}\cdot\dfrac{504}{1009}=-\dfrac{672}{1009}\)

7 tháng 5 2021

3A=3/2.5+...+3/2018.2021

3A=1/2-1/5+1/5-...+1/2018-1/2021

3A=1/2-1/2021 sau tự tính A

8 tháng 5 2021

3A= 1/2- 1/5 + 1/5- 1/8+ 1/8 -1/11+...+ 1/2012- 1/2015 +1/2015-  1/2018-1/2021

 3A   =1/2 -1/2021 

3A    = 2019/ 4042

  => 2019/4042 : 3 = 673/4042      

Chúc bạn học tốt !!

27 tháng 4 2017

\(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{3}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\) \(\frac{3}{4}\)                                                                                                          \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=2-\frac{2}{101}=\frac{200}{101}\)

27 tháng 4 2017

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(B=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(B=2.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(B=2.\frac{100}{101}=\frac{200}{101}\)

9 tháng 4 2017

\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\dfrac{96}{505}\)

\(\Rightarrow G=\dfrac{64}{505}\)

9 tháng 4 2017

giải hộ với

Ta có :

M= \(\dfrac{3+3-3+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4+4-4+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)= \(\dfrac{3+3-3}{4+4-4}=\dfrac{3}{4}\)

b) Nhận xét thấy: \(\dfrac{2}{1.3}=1-\dfrac{1}{3};\dfrac{1}{3.5}=\dfrac{1}{3}-\dfrac{1}{5};...\)

Ta có:

B= 1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

B= 1- \(\dfrac{1}{101}\)= \(\dfrac{100}{101}\)

Vậy B= \(\dfrac{100}{101}\)

Ta có: \(A=\dfrac{4}{2\cdot5}+\dfrac{4}{5\cdot8}+...+\dfrac{4}{65\cdot68}\)

\(=\dfrac{4}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{65\cdot68}\right)\)

\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)

\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{33}{68}=\dfrac{11}{17}\)

24 tháng 7 2021

Thank bạn!

3 tháng 3 2017

2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)

= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)

=1-\(\dfrac{1}{101}\)=...........

mk làm vậy thôi nha

thông cảm

leuleuyeu

2 tháng 3 2017

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)

=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)

tương tự

\(B=\dfrac{2^{24}\cdot3^5-2^{24}\cdot3^4}{2^{24}\cdot3^5}+1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{301}-\dfrac{1}{303}\)

\(=\dfrac{2^{24}\cdot3^4\left(3-1\right)}{2^{24}\cdot3^5}+\dfrac{302}{303}\)

\(=\dfrac{2}{3}+\dfrac{302}{303}=\dfrac{202+302}{303}=\dfrac{504}{303}\)

=168/101