Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/9 + 6/27 + 8/36 + 12/54 + 16/72 + 18/81=\(\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}\) = \(\frac{2}{9}\). 6 = \(\frac{12}{9}\)= \(\frac{4}{3}\)
\(\frac{2}{9}+\frac{6}{27}+\frac{8}{36}+\frac{12}{54}+\frac{16}{72}+\frac{18}{81}\)
\(=\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}+\frac{2}{9}\)
\(=\frac{2}{9}×6=\frac{4}{3}\)
`2/9 + 6/27 + 8/36 + 12/54 + 16/72 + 18/81`
`= 2/9 + 2/9 + 2/9 + 2/9 + 2/9 + 2/9`
`= 2/9 xx 6`
`= 12/9 = 4/3`
a)
Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:
2/9+6/27+8/36+12/54+16/72+18/81=
2/9+2/9+2/9+2/9+2/9+2/9=
2/9*6=
12/9=
4/3
Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3
b)
Ta có:
1-2/5=3/5
1-2/7=5/7
1-2/9=7/9
...
1-2/99=97/99
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=
3/5*5/7*7/9*...*97/99=
(3*5*7*...*97)/(5*7*9*...*99)=
3/99=
1/33
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33
c)
Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:
S=1/2+1/4+1/8+1/16+...+1/1024
S*2=1+1/2+1/4+1/8+...+1/512
S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)
S=1-1/1024
S=1023/1024
Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024
a. =(1+10)×10 :2
=11×10:2
=110:2
=55
b. Số các số hạng là =(90-9):9+1= 10
Tổng = (9+90)×10:2=495
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
a) 10; 13; 18; 26; 36; 52...
c) 0; 1; 4; 9; 16; 25...
m) 1; 4; 9; 16; 25; 36; 49; 64...
p) 1; 3; 9; 27; 81; 243...
\(\frac{1\cdot3\cdot9+2\cdot6\cdot18+3\cdot9\cdot27}{1\cdot5\cdot18+2\cdot10\cdot36+3\cdot15\cdot54}\)
\(=\frac{1\cdot3\cdot9+2\left(1\cdot3\cdot9\right)+3\left(1\cdot3\cdot9\right)}{1\cdot5\cdot18+2\left(1\cdot5\cdot18\right)+3\left(1\cdot5\cdot18\right)}\)
\(=\frac{\left(1\cdot3\cdot9\right)\left(1+2+3\right)}{\left(1\cdot5\cdot18\right)\left(1+2+3\right)}\)
\(=\frac{3}{10}\)