Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{2}{100}-1=-\frac{49}{50}\)
(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)
=101+100+99+98+...+3+2+1
=101 . (101 + 2) : 2
=5151
101-100+99-98+...+3-2+1
=(101-100)+(99-98)+...+(3-2)+1
=1 + 1 + 1 + ... + 1
=101- 2 + 1
=100 : 2
=50 + 1
=51
(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101
giải
B=1+2+3+......+98+99
+
B=99+98+.....+2+1
2B=100+100+...+100+100 = 100.99 = B = 50.99=4950
T
\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+\frac{1}{98\cdot97}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)
\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)
\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(\Rightarrow C=\frac{1}{100}-1+\frac{1}{100}\)
\(\Rightarrow C=\left(\frac{1}{100}+\frac{1}{100}\right)-1\)
\(\Rightarrow C=\frac{1}{50}-1\)
\(\Rightarrow C=\frac{-49}{50}\)
\(...=1-\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-...-\dfrac{1}{98}+\dfrac{1}{99}\)
\(=\dfrac{1}{99}\) (Bạn xem lại đề)
\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{98}{100}=\frac{49}{50}\)