K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.

17 tháng 4 2022

a. M(x) + N(x) = 3x3 - 3x + x2 + 5 + 2x2 - x + 3x3 + 9

= (3x3 + 3x3) + ( x2 + 2x2 ) + ( -3x  - x ) + (5 + 9)

= 6x3 + 3x2 - 4x + 14

b. M(x) + N(x) - P(x)  = 6x3 + 3x2 + 2x 

=> 6x3 + 3x2 - 4x + 14 - P(x) = 6x3 + 3x2 + 2x

=> 6x3 + 3x2 - 4x + 14 - ( 6x3 + 3x2 + 2x) = P(x)

=> 6x3 + 3x2 - 4x + 14 - 6x3 - 3x2 - 2x = P(x)

=> (6x3 - 6x3 ) + (3x2 - 3x2 ) + (-4x - 2x ) + 14 = P(x)

=> -6x + 14 = P(x)

Ta có : -6x + 14 = 0

=> -6x = -14

=> x = 7/3

=> Đa thức P(x) = -6x + 14  có nghiệm là 7/3

=> 

31 tháng 5 2020

trả lời hết nha

a, Ta có: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(4x^2-4+3x^3-2x-x^5\right)+\left(3x-2x^3+4-x^4+x^5\right)\)

\(=4x^2-4+3x^3-2x-x^5+3x-2x^3+4-x^4+x^5\)

\(=4x^2+x^3+x-x^4\) (cj ko cs tg,e check hộ cj nhé!)

Vậy \(M\left(x\right)=-x^4+x^3+4x^2+x\)

b, TH1 : Thay x = -1 vào đa thức trên ta đc

\(4.\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)-\left(-1\right)^4=4.1-1-1-1=4-3=1\)

TH2 : Thay x = 2 vào đa thức trên ta đc

\(-2^4+2^3+4.2^2+2=-16+8+16+2=10\)

c, cj ko hiểu đề lắm, cj đi hok hơi nhiều nên cx ko chắc đáp án lắm, có j sai ko hiểu chỗ nào ib cj nhé ! 

9 tháng 5 2018

2F(x) = 2 (x3 - 2x2 + 0x - 10)

+

G(x) = -2x3 + 3x2 - 8x -1

=

2F(x) = 2x3 - 4x2 + 0x -20

+

G(x) = -2x3 + 3x2 - 8x -1

=

H(x) = 2F(x) + G(x) = -x2 - 8x -21

ta có:

H(x) = -x2 - 8x -21

vì -x2 ≤ 0 ⇒ -x2 - 8x -21 < 0

⇒ vô nghiệm