Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+......(-2000+2001+2002-2003)
A=0+0....+0
A=0
Ta thấy 2-3-4=-5
6-7-8=-9
.............
1998-1999-2000=-2001
=> 1+2-3-4+5+6-7-8+....-1999-2000+2001-2003=1-5+5-9+9-...-2001+2001+2002-2003
=> A= 1+2002-2003=0
Vậy A=0
Âp dụng hằng đẳng thức\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)ta có
A có 2004-1+1=2004(số)
Mà 2004 chia hết cho 2 nên ta nhóm như sau:
\(A=2004^2-2003^2+2002^2-2001^2+...+2^2-1^2=\left(2004^2-2003^2\right)+\left(2002^2-2001^2\right)+...+\left(2^2-1^2\right)\)
\(A=\left(2004-2003\right)\left(2004+2003\right)+\left(2002-2001\right)\left(2002+2001\right)+...+\left(2-1\right)\left(2+1\right)\)
\(A=2004+2003+2002+2001+...+2+1=\frac{\left(1+2004\right).2004}{2}=2009010\)
\(\dfrac{x+4}{2000}\) + \(\dfrac{x+3}{2001}\) =\(\dfrac{x+2}{2002}\) + \(\dfrac{x+1}{2003}\)
<=> \(\dfrac{x+4}{2000}\) + 1 + \(\dfrac{x+3}{2001}\) +1 = \(\dfrac{x+2}{2002}\) + 1 + \(\dfrac{x+1}{2003}\) + 1
<=>\(\dfrac{x+4}{2000}\)+\(\dfrac{2000}{2000}\)+\(\dfrac{x+3}{2001}\) \(\dfrac{2001}{2001}\) = \(\dfrac{x+2}{2002}\)+\(\dfrac{2002}{2002}\)+\(\dfrac{x+1}{2003}\)+\(\dfrac{2003}{2003}\)
<=> \(\dfrac{x+4+2000}{2000}\)+\(\dfrac{x+3+2001}{2001}\) = \(\dfrac{x+2+2002}{2002}\)+ \(\dfrac{x+1+2003}{2003}\)
<=> \(\dfrac{x+2004}{2000}\) + \(\dfrac{x+2004}{2001}\) - \(\dfrac{x+2004}{2002}\) - \(\dfrac{x+2004}{2003}\) = 0
<=> (x+2004)(\(\dfrac{1}{2000}\) + \(\dfrac{1}{2001}\) - \(\dfrac{1}{2002}\) -\(\dfrac{1}{2003}\)) = 0
mà \(\dfrac{1}{2000}\) + \(\dfrac{1}{2001}\) - \(\dfrac{1}{2002}\) - \(\dfrac{1}{2003}\) khác 0
nên x+2004=0
=>x=0-2004
=> x = -2004
vậy S = -2004.
Tick nha
\(N=\dfrac{1}{2003\cdot2002}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\right)\)
\(=\dfrac{1}{2003}-\dfrac{1}{2002}-1+\dfrac{1}{2002}\)
\(=\dfrac{1}{2003}-1=\dfrac{-2002}{2003}\)