K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2022

Giới hạn này thiếu x tiến tới bao nhiêu nên ko tính được

27 tháng 11

đặt x^2+ax+b= (x-1)(x-m)
x^2+ax+b/x^2-1 = x-m/x+1
lim x-m/x+1=-1/2 suy ra 1-m/2=-1/2 nên m = 3
x^2+ax+b= (x-1)(x-3)=x^2-4x+3 suy ra a=-4, b=3

\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)

\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)

20 tháng 1 2023

Còn cách giải chi tiết hơn không ạ như này e chưa hiểu lắm

30 tháng 1 2021

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).

NV
3 tháng 3 2021

Hiển nhiên là cách đầu sai rồi em

Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được

3 tháng 3 2021

em cảm ơn ạ =)))

\(=\lim\limits_{x->2}\dfrac{3x-2-4}{\sqrt{3x-2}+2}\cdot\dfrac{1}{-2\left(x-2\right)}\)

\(=\lim\limits_{x->2}\dfrac{-3}{2\left(\sqrt{3x-2}+2\right)}=\dfrac{-3}{2\sqrt{3\cdot2-2}+4}=\dfrac{-3}{8}\)

NV
23 tháng 3 2022

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x-2}+1}{\sqrt[]{x+3}-2}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x-2}+1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)\left(\sqrt[]{x+3}+2\right)}{\left(\sqrt[]{x+3}-2\right)\left(\sqrt[]{x+3}+2\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\sqrt[]{x+3}+2\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x+3}+2}{\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1}\)

\(=\dfrac{\sqrt[]{1+3}+2}{\sqrt[3]{\left(1-2\right)^2}-\sqrt[3]{1-2}+1}=\dfrac{4}{3}\)

23 tháng 3 2022

em cảm ơn ạ

NV
26 tháng 3 2022

\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+3x}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-\sqrt{x^2+3x}\right)\left(x+\sqrt{x^2+3x}\right)}{x+\sqrt{x^2+3x}}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-3x}{x+\sqrt{x^2+3x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-3}{1+\sqrt{1+\dfrac{3}{x}}}=-\dfrac{3}{2}\)

26 tháng 3 2022

Cảm ơn thầy nhiều lắm ạ

NV
2 tháng 6 2021

Mình bận 1 xíu, nhưng nếu học giới hạn thì bạn cần nắm rõ các khái niệm và các dạng vô định cũng như không phải vô định đã

Giới hạn này không phải là 1 giới hạn vô định (mẫu số xác định và hữu hạn), khi gặp giới hạn kiểu này thì chỉ có 1 cách: thay số tính trực tiếp như lớp 1 là được:

\(\lim\limits_{x\rightarrow\dfrac{\pi}{2}}\dfrac{sin\left(x-\dfrac{\pi}{4}\right)}{x}=\dfrac{sin\left(\dfrac{\pi}{2}-\dfrac{\pi}{4}\right)}{\dfrac{\pi}{2}}=\dfrac{\sqrt{2}}{\pi}\)

 

2 tháng 6 2021

Dạ :|

NV
9 tháng 3 2022

\(\lim\dfrac{3^n+2.6^n}{6^{n-1}+5.4^n}=\lim\dfrac{6^n\left[\left(\dfrac{3}{6}\right)^n+2\right]}{6^n\left[\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n\right]}=\lim\dfrac{\left(\dfrac{3}{6}\right)^n+2}{\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n}=\dfrac{0+2}{\dfrac{1}{6}+0}=12\)

\(\lim\left(\sqrt{n^2+9}-n\right)=\lim\dfrac{\left(\sqrt{n^2+9}-n\right)\left(\sqrt{n^2+9}+n\right)}{\sqrt{n^2+9}+n}=\lim\dfrac{9}{\sqrt{n^2+9}+n}\)

\(=\lim\dfrac{n\left(\dfrac{9}{n}\right)}{n\left(\sqrt{1+\dfrac{9}{n^2}}+1\right)}=\lim\dfrac{\dfrac{9}{n}}{\sqrt{1+\dfrac{9}{n^2}}+1}=\dfrac{0}{1+1}=0\)

\(\lim\dfrac{\sqrt{15+9n^2}-3}{5-n}=\lim\dfrac{n\sqrt{\dfrac{15}{n^2}+9}-3}{5-n}=\lim\dfrac{n\left(\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}\right)}{n\left(\dfrac{5}{n}-1\right)}\)

\(=\lim\dfrac{\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}}{\dfrac{5}{n}-1}=\dfrac{\sqrt{9}-0}{0-1}=-3\)

11 tháng 3 2022

em cảm ơn ạ