K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)

=\(\frac{1.2.3...99}{2.3.4...100}\)

=\(\frac{1}{100}\)

Chúc bạn học giỏi nha

21 tháng 3 2017

=1/2.2/3.3/4.....99/100=1/100

2 tháng 4 2023

1+1=3 :)))

12 tháng 7 2016

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)

\(=\frac{3}{2}.\frac{4}{3}.........\frac{100}{99}\)

\(=\frac{100}{2}=50\)

\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).........\left(\frac{1}{100}-1\right)\)

\(=-\frac{1}{2}.-\frac{2}{3}..........-\frac{99}{100}\)

\(=\frac{-1}{100}\)

12 tháng 7 2016

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)

  \(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

\(=\frac{3.4.5.....100}{2.3.4.....99}\)

 \(=\frac{100}{2}=50\)

13 tháng 6 2020

(1-1/3)x(1-1/5)x(1-1/7)x(1-1/9)x(1-1/2)x(1-1/4)x(1-1/6)x(1-1/8)x(1-1/10)

=2/3x4/5x6/7x8/9x1/2x3/4x5/6x7/8x9/10

=2x4x6x8x1x3x5x7x9 /3x5x7x9x2x4x6x8x10

=1/10

29 tháng 3 2017

a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)

29 tháng 3 2017

a) =3/2 . 4/3 . 5/4 ...100/99

   =\(\frac{3.4.5...100}{2.3.4..99}\)

  =\(\frac{100}{2}\)

b) =

21 tháng 3 2020

\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):....:\left(\frac{1}{100}-1\right)\text{ có số số lẻ thừa số âm nên bằng:}\)

\(-\left[\left(1-\frac{1}{2}\right):\left(1-\frac{1}{3}\right):...\left(1-\frac{1}{100}\right)\right]=-\left[\frac{1}{2}:\frac{2}{3}:\frac{3}{4}:......:\frac{99}{100}\right]=-\left(\frac{1.3.4...100}{2.2.3...99}\right)=-50\)

15 tháng 8 2017

bn thử nghĩ xem

mk chắc chắn bn lm được]

13 tháng 4 2016

9999/16000

13 tháng 4 2016

9999/16000

13 tháng 6 2020

\(b,\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)

\(=\frac{100}{2}\)

\(=50\)

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)