Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: CO = CA (gt)
DO = DB (gt)
⇒ CD là đường trung bình của ΔOAB
⇒ AB = 2CD = 2.3 = 6cm.
Xét tam giác OAB ta có:
C là trung điểm của OA (1)
D là trung điểm của OB (2)
Từ (1)(2) => CD là đường trung bình của tam giác OAB
=> CD=1/2AB
=>AB = CD x 2 =5 x 2 =10 (cm )
P/s tham khảo nha
Bài 2:
b: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
Kẻ CE ⊥ AB, IH ⊥ AB, DF ⊥ AB
Suy ra: CE // DF // IH
IC = ID (gt)
Nên IH là đường trung bình của hình thang DCEF ⇒ IH = (DF + CE) / 2
Vì C là tâm hình vuông AMNP nên ∆ CAM vuông cân tại C
CE ⊥ AM ⇒ CE là đường trung tuyến (tính chất tam giác cân)
⇒ CE = 1/2 AM
Vì D là tâm hình vuông BMLK nên ∆ DBM vuông cân tại D
DF ⊥ BM ⇒ DF là đường trung tuyến (tính chất tam giác cân)
⇒ DF = 1/2 BM
Vậy CE + DF = 1/2 AM + 1/2 BM = 1/2 (AM + BM)= 1/2 AB = a/2
Suy ra: IH = (a/2) / 2 = a/4
Bài giải:
Ta có CO = CA (gt)
DO = DB (gt)
Nên CD là đường trung bình của ∆OAB.
Do đó CD = 1212AB
Suy ra AB = 2CD = 2.3 = 6cm.
Ta có: CO = CA (gt)
DO = DB (gt)
Nên CD là đường trung bình của ΔOAB
Suy ra AB = 2CD = 2.3 = 6cm