Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}\)
\(=5-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\)
\(=5-\left(\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}\right)\)
\(=5-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(=5-\left(1-\frac{1}{6}\right)=5-\frac{5}{6}=\frac{25}{6}\)
Bước 1: Tìm công thức chung của dãy phân số. Ta thấy rằng mẫu số của các phân số trong dãy là các số tự nhiên liên tiếp nhau từ 2 trở đi. Vậy ta có thể viết mẫu số của phân số thứ n là n+1. Còn tử số của phân số thứ n là tổng của các số tự nhiên từ 1 đến n. Vậy phân số thứ n có dạng: (1+2+3+...+n)/(n+1).
Bước 2: Tính tổng của các phân số trong dãy. Ta có công thức tổng của dãy phân số là: Tổng = (1+2+3+...+n)/(n+1). Vậy để tính tổng của 12 phân số trên, ta cần tính tổng của các số từ 1 đến 12 và chia cho 13.
Bước 3: Tính tổng các số từ 1 đến 12. Tổng các số từ 1 đến 12 là: 1+2+3+...+12 = 78.
Bước 4: Tính tổng của 12 phân số. Tổng = 78/13 = 6.
Vậy tổng của 12 phân số trên là 6.
A = \(\dfrac{1}{2}\) + \(\dfrac{5}{6}\) + \(\dfrac{11}{12}\) + \(\dfrac{19}{20}\)+ \(\dfrac{29}{30}\)+ \(\dfrac{41}{42}\)+....+
A = \(\dfrac{1}{1\times2}\)+ \(\dfrac{5}{2\times3}\)+\(\dfrac{11}{3\times4}\)+...+
xét dãy số: 1; 2; 3; 4;...;
Dãy số trên là dãy số cách đều, với khoảng cách là 2-1 = 1
Số thứ 12 của dãy số trên là: (12 - 1)\(\times\)1 + 1 = 12
Phân số thứ 12 của tổng A là: \(\dfrac{155}{12\times13}\) = \(\dfrac{155}{156}\)
A = \(\dfrac{1}{2}\)+\(\dfrac{5}{6}\)+\(\dfrac{11}{12}\)+\(\dfrac{19}{20}\)+\(\dfrac{29}{30}\)+\(\dfrac{41}{42}\)+...+\(\dfrac{155}{156}\)
A = 1 - \(\dfrac{1}{2}\) + 1 - \(\dfrac{1}{6}\)+1-\(\dfrac{1}{12}\)+1-\(\dfrac{1}{20}\)+1-\(\dfrac{1}{30}\)+1-\(\dfrac{1}{42}\)...+1-\(\dfrac{1}{156}\)
A = (1+1+...+1) - (\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+..+\(\dfrac{1}{156}\))
A = 1\(\times\)12 - ( \(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+...+\(\dfrac{1}{12\times13}\))
A = 12 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{12}\)-\(\dfrac{1}{13}\))
A = 12 - ( 1 - \(\dfrac{1}{13}\))
A = 12 - \(\dfrac{12}{13}\)
A = \(\dfrac{144}{13}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{42}{43}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+\frac{42}{43}\)
\(=6-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)+\frac{42}{43}\)
\(=6-\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}\right)+\frac{42}{43}\)
\(=6-\left(1-\frac{1}{6}\right)+\frac{42}{43}\)
...
bn tự tính tiếp nha
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+1+1+1+1+1+1+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\)
Từ 2 đến 9 có : ( 9 - 2 ) / 1 + 1 = 8 ( số hạng ) => có 8 số 1
\(\Rightarrow8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{109}{110}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{110}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{10\cdot11}\right)\)
Từ 1 đến 10 có : ( 10 - 1 ) / 1 + 1 = 10 ( số hạng ) => có 10 số 1
\(\Rightarrow10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{11}\right)\)
\(=10-\frac{10}{11}=\frac{100}{11}\)
\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}.\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)\)
\(A=\left(1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\)
\(A=5-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
\(A=5-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(A=5-\left(1-\frac{1}{6}\right)=...\)
bn tự làm tiếp nah
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
A=1/2+ 5/6 + 11/12 + 19/20 + 29 30 + 41/42 + 55/56 + 71/72 + 89/90
1/2 + 5/6 + 11/12 + 19/20 + 29/30 +. . . 9701 + / 9702 + 9899/9900 = 1/2 + (1-1 / 6) + (1-1 / 12) + (1-1 / 20) + (1-1 / 30) + ...... + (1 -1/9702) + (1-1 / 9900) = 1/2 + [1 - (1 / 2-1 / 3)] + [1 - (1 / 3-1 / 4)] + [1- ( 1 / 4-1 / 5)] + [1 - (1 / 5-1 / 6)] + ...... + [1- (1 / 98-1 / 99)] + [1 - (1 / 99-1 / 100)] * 100 + 1 = 1 / 2-1 / 2 + 1 / 3-1 / 3 + 1 / 4-1 / 4 + 1 / 5-1 / 5 + 1 / 6-1 / 6 + ... ... 1 / 98-1 / 98 + 1 / 99-1 / 99 + 1/100 + 1 = 100/100 = 100 và 1/100